Tensor category KLk(sl2n) via minimal affine W-algebras at the non-admissible level k =-2n+1/2

被引:1
|
作者
Adamovic, Drazen [1 ]
Creutzig, Thomas [2 ]
Perse, Ozren [1 ]
Vukorepa, Ivana [1 ]
机构
[1] Univ Zagreb, Fac Sci, Dept Math, Bijenicka 30, Zagreb, Croatia
[2] Univ Alberta, Dept Math & Stat Sci, 632 CAB, Edmonton, AB T6G 2G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
VERTEX OPERATOR-ALGEBRAS; MODULAR INVARIANT REPRESENTATIONS; CLASSIFICATION; EXTENSIONS; MODEL;
D O I
10.1016/j.jpaa.2023.107565
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the Kazhdan-Lusztig category of slm at level k, KLk(slm), is a semi-simple, rigid braided tensor category for all even m >= 4, and k = - m+1 2 . Moreover, all modules in KLk(slm) are simple-currents and they appear in the decomposition of conformal embeddings glm -> slm+1 at level k = - m+1 2 . For this we inductively identify minimal affine W-algebra Wk-1(slm+2, theta) as simple current extension of Lk(slm) circle times H circle times M, where H is the rank one Heisenberg vertex algebra, and M the singlet vertex algebra for c = -2. The proof uses previously obtained results for the tensor categories of singlet algebra. We also classify all irreducible ordinary modules for Wk-1(slm+2, theta). The semi-simple part of the category of Wk-1(slm+2, theta)-modules comes from KLk-1(slm+2), using quantum Hamiltonian reduction, but this W-algebra also contains indecomposable ordinary modules. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:25
相关论文
共 14 条