Multi-label Generalized Zero-Shot Learning Using Identifiable Variational Autoencoders

被引:1
|
作者
Gull, Muqaddas [1 ]
Arif, Omar [1 ]
机构
[1] Natl Univ Sci & Technol NUST, Sch Elect Engn & Comp Sci, Islamabad 44000, Pakistan
来源
关键词
Attribute-Level Feature Fusion; Zero-Shot Learning; Disentangled Representation Learning; Generalized Zero-Shot Learning;
D O I
10.1007/978-3-031-43404-4_3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Multi-label Zero-Shot Learning (ZSL) is an extension of traditional single-label ZSL, where the objective is to accurately classify images containing multiple unseen classes that are not available during training. Current techniques depends on attention mechanisms and Generative Adversarial Networks (GAN) to address multi-label ZSL and Generalized Zero-Shot Learning (GZSL) challenge. However, generating features for both multi-label ZSL and GZSL in the context of disentangled representation learning remains unexplored. In this paper, we propose an identifiable Variational Autoencoder (iVAE) based generative framework for multi-label ZSL and GZSL. The main idea of our proposed approach is to learn disentangled representations for generating semantically consistent multi-label features using an attribute-level feature fusion technique. We perform comprehensive experiments on two benchmark datasets, NUS-WIDE and MS COCO, for both multi-label ZSL and GZSL. Furthermore, disentangled representation learning for both multi-label ZSL and GZSL on standard datasets achieves commendable performance as compared to existing methods.
引用
收藏
页码:35 / 50
页数:16
相关论文
共 50 条
  • [1] Generalized Zero-Shot Learning using Identifiable Variational Autoencoders
    Gull, Muqaddas
    Arif, Omar
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 191
  • [2] Generalized Zero-Shot Extreme Multi-label Learning
    Gupta, Nilesh
    Bohra, Sakina
    Prabhu, Yashoteja
    Purohit, Saurabh
    Varma, Manik
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 527 - 535
  • [3] Multi-Label Zero-Shot Learning With Adversarial and Variational Techniques
    Gull, Muqaddas
    Arif, Omar
    IEEE ACCESS, 2024, 12 : 94990 - 95006
  • [4] Generative Multi-Label Zero-Shot Learning
    Gupta, Akshita
    Narayan, Sanath
    Khan, Salman
    Khan, Fahad Shahbaz
    Shao, Ling
    van de Weijer, Joost
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (12) : 14611 - 14624
  • [5] Zero-shot multi-label learning via label factorisation
    Shao, Hang
    Guo, Yuchen
    Ding, Guiguang
    Han, Jungong
    IET COMPUTER VISION, 2019, 13 (02) : 117 - 124
  • [6] A Probabilistic Framework for Zero-Shot Multi-Label Learning
    Gaure, Abhilash
    Gupta, Aishwarya
    Verma, Vinay Kumar
    Rai, Piyush
    CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI2017), 2017,
  • [7] Collaborative learning of supervision and correlation for generalized zero-shot extreme multi-label learning
    Zhao, Fei
    Tao, Ran
    Wang, Wenhui
    Cui, Bo
    Xu, Yuting
    Ai, Qing
    APPLIED INTELLIGENCE, 2024, 54 (08) : 6285 - 6298
  • [8] Few-Shot and Zero-Shot Multi-Label Learning for Structured Label Spaces
    Rios, Anthony
    Kavuluru, Ramakanth
    2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 3132 - 3142
  • [9] Multi-label zero-shot learning with graph convolutional networks
    Ou, Guangjin
    Yu, Guoxian
    Domeniconi, Carlotta
    Lu, Xuequan
    Zhang, Xiangliang
    NEURAL NETWORKS, 2020, 132 (132) : 333 - 341
  • [10] Multi-Label Zero-Shot Learning with Structured Knowledge Graphs
    Lee, Chung-Wei
    Fang, Wei
    Yeh, Chih-Kuan
    Wang, Yu-Chiang Frank
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 1576 - 1585