Mapping local atomic structure of metallic glasses using machine learning aided 4D-STEM

被引:4
|
作者
Kang, Sangjun [1 ,2 ]
Wollersen, Vanessa [1 ]
Minnert, Christian [3 ]
Durst, Karsten [3 ]
Kim, Hyoung-Seop [4 ,5 ,6 ]
Kuebel, Christian [1 ,2 ,7 ]
Mu, Xiaoke [1 ,8 ,9 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Nanotechnol INT, D-76344 Eggenstein Leopoldshafen, Germany
[2] Tech Univ Darmstadt TUDa, Joint Res Lab Nanomat, Darmstadt, Germany
[3] Tech Univ Darmstadt TUDa, Dept Mat Sci, Phys Met, D-64287 Darmstadt, Germany
[4] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang 37673, South Korea
[5] Tohoku Univ, Adv Inst Mat Res WPI AIMR, Sendai 9808577, Japan
[6] Yonsei Univ, Inst Convergence Res & Educ Adv Technol, Seoul 03722, South Korea
[7] Karlsruhe Inst Technol KIT, Karlsruhe Nano Micro Facil KNMFi, D-76344 Eggenstein Leopoldshafen, Germany
[8] Lanzhou Univ, Sch Mat & Energy, Lanzhou 730000, Peoples R China
[9] Lanzhou Univ, Electron Microscopy Ctr, Lanzhou 730000, Peoples R China
关键词
Four dimensional -scanning transmission elec; tron microscopy (4D-STEM); Pair distribution function (PDF); Nonnegative matrix factorization (NMF); Metallic glasses; FLUCTUATION ELECTRON-MICROSCOPY; PAIR DISTRIBUTION FUNCTION; MEDIUM-RANGE ORDER; MECHANICAL-BEHAVIOR; DIFFRACTION; CRYSTALLINE; RELAXATION; THICKNESS; PACKING; PROBE;
D O I
10.1016/j.actamat.2023.119495
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Amorphous materials such as polymers, metallic and oxidic glasses consist of heterogeneous atomic/molecular packing at the nanoscale. Spatial variation of the local structure plays an important role in determining material properties. Experimentally probing the local atomic structure within the amorphous phase has been one of the main challenges for material research. Here, we present a new approach to characterize the local atomic structure and map structural variants in the amorphous phase using machine learning (ML) aided four dimensional-scanning transmission electron microscopy (4D-STEM). We utilized nonnegative matrix factorization (NMF) to identify the local structural types of metallic glasses in 4D-STEM datasets. Using Fe-based metallic glasses as a model system, we demonstrate that two basic structural types, one with a more liquid-like and another with a more solid-like structure, are distributed throughout the glass with a characteristic length scale of a few nanometers. Thermal annealing induces a change in their distribution and relative population but without the appearance of any additional phase. This provides new insights into the relaxation phenomena of metallic glasses and solid experimental evidence for the theoretical hypothesis on atomic packing in glassy structures.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Extracting Local Crystallographic Structure Using 4D-STEM Datasets
    Ophus, C.
    Ercius, P.
    Sarahan, M.
    Czarnik, C.
    Ciston, J.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2014, 70 : C1455 - C1455
  • [2] Unsupervised machine learning and cepstral analysis with 4D-STEM for characterizing complex microstructures of metallic alloys
    Yoo, Timothy
    Hershkovitz, Eitan
    Yang, Yang
    Gallo, Flavia da Cruz
    Manuel, Michele V.
    Kim, Honggyu
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [3] Unveiling and mapping polymorphs in fluorite Y2TiO5 using 4D-STEM and unsupervised machine learning
    Hershkovitz, Eitan
    Yoo, Timothy
    Pu, Xiaofei
    Bawane, Kaustubh
    Nakayama, Tadachika
    Suematsu, Hisayuki
    He, Lingfeng
    Kim, Honggyu
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2025, 108 (04)
  • [4] A local probe into the atomic structure of metallic glasses using EELS
    Alamgir, FM
    Ito, Y
    Jain, H
    Williams, DB
    Schwarz, RB
    BULK METALLIC GLASSES, 1999, 554 : 15 - 20
  • [5] Atomic volumes and local structure of metallic glasses
    Bakonyi, I
    ACTA MATERIALIA, 2005, 53 (08) : 2509 - 2520
  • [6] Phase Object Reconstruction for 4D-STEM using Deep Learning
    Friedrich, Thomas
    Yu, Chu-Ping
    Verbeeck, Johan
    Van Aert, Sandra
    arXiv, 2022,
  • [7] Phase Object Reconstruction for 4D-STEM using Deep Learning
    Friedrich, Thomas
    Yu, Chu-Ping
    Verbeeck, Johan
    Van Aert, Sandra
    MICROSCOPY AND MICROANALYSIS, 2023, 29 (01) : 395 - 407
  • [8] Nanoscale mapping of point defect concentrations with 4D-STEM
    Mills, Sean H.
    Zeltmann, Steven E.
    Ercius, Peter
    Kohnert, Aaron A.
    Uberuaga, Blas P.
    Minor, Andrew M.
    ACTA MATERIALIA, 2023, 246
  • [9] Mapping valence electron distributions with multipole density formalism using 4D-STEM
    Wu, Lijun
    Meng, Qingping
    Zhu, Yimei
    ULTRAMICROSCOPY, 2020, 219
  • [10] Machine learning bridges local static structure with multiple properties in metallic glasses
    Fan, Zhao
    Ding, Jun
    Ma, Evan
    MATERIALS TODAY, 2020, 40 : 48 - 62