Hierarchical Prompt Learning for Multi-Task Learning

被引:9
|
作者
Liu, Yajing [1 ]
Lu, Yuning [2 ]
Liu, Hao [1 ]
An, Yaozu [1 ]
Xu, Zhuoran [1 ]
Yao, Zhuokun [1 ]
Zhang, Baofeng [1 ]
Xiong, Zhiwei [2 ]
Gui, Chenguang [1 ]
机构
[1] JD Logist, Beijing, Peoples R China
[2] Univ Sci & Technol China, Hefei, Anhui, Peoples R China
关键词
D O I
10.1109/CVPR52729.2023.01048
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Vision-language models (VLMs) can effectively transfer to various vision tasks via prompt learning. Real-world scenarios often require adapting a model to multiple similar yet distinct tasks. Existing methods focus on learning a specific prompt for each task, limiting the ability to exploit potentially shared information from other tasks. Naively training a task-shared prompt using a combination of all tasks ignores fine-grained task correlations. Significant discrepancies across tasks could cause negative transferring. Considering this, we present Hierarchical Prompt (HiPro) learning, a simple and effective method for jointly adapting a pre-trained VLM to multiple downstream tasks. Our method quantifies inter-task affinity and subsequently constructs a hierarchical task tree. Task-shared prompts learned by internal nodes explore the information within the corresponding task group, while task-individual prompts learned by leaf nodes obtain fine-grained information targeted at each task. The combination of hierarchical prompts provides high-quality content of different granularity. We evaluate HiPro on four multi-task learning datasets. The results demonstrate the effectiveness of our method.
引用
收藏
页码:10888 / 10898
页数:11
相关论文
共 50 条
  • [1] Hierarchical Prompt Tuning for Few-Shot Multi-Task Learning
    Liu, Jingping
    Chen, Tao
    Liang, Zujie
    Jiang, Haiyun
    Xiao, Yanghua
    Wei, Feng
    Qian, Yuxi
    Hao, Zhenghong
    Han, Bing
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 1556 - 1565
  • [2] HFedMTL: Hierarchical Federated Multi-Task Learning
    Yi, Xingfu
    Li, Rongpeng
    Peng, Chenghui
    Wu, Jianjun
    Zhao, Zhifeng
    2022 IEEE 33RD ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (IEEE PIMRC), 2022,
  • [3] Compressed Hierarchical Representations for Multi-Task Learning and Task Clustering
    de Freitas, Joao Machado
    Berg, Sebastian
    Geiger, Bernhard C.
    Muecke, Manfred
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [4] HIERARCHICAL MULTI-TASK LEARNING VIA TASK AFFINITY GROUPINGS
    Srivastava, Siddharth
    Bhugra, Swati
    Kaushik, Vinay
    Lall, Brejesh
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 3289 - 3293
  • [5] Bayesian Multi-Task Transfer Learning for Soft Prompt Tuning
    Lee, Haeju
    Jeong, Minchan
    Yun, Se-Young
    Kim, Kee-Eung
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS - EMNLP 2023, 2023, : 4942 - 4958
  • [6] Coded Distributed Computing for Hierarchical Multi-task Learning
    Hu, Haoyang
    Li, Songze
    Cheng, Minquan
    Wu, Youlong
    2023 IEEE INFORMATION THEORY WORKSHOP, ITW, 2023, : 480 - 485
  • [7] Hierarchical Gaussian Processes model for multi-task learning
    Li, Ping
    Chen, Songcan
    PATTERN RECOGNITION, 2018, 74 : 134 - 144
  • [8] Unsupervised Multi-task Learning with Hierarchical Data Structure
    Cao, Wenming
    Qian, Sheng
    Wu, Si
    Wong, Hau-San
    PATTERN RECOGNITION, 2019, 86 : 248 - 264
  • [9] Multi-Task Hierarchical Imitation Learning for Home Automation
    Fox, Roy
    Berenstein, Ron
    Stoica, Ion
    Goldberg, Ken
    2019 IEEE 15TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2019, : 1380 - 1387
  • [10] Hierarchical Multi-Task Learning for Healthy Drink Classification
    Park, Homin
    Bharadhwaj, Homanga
    Lim, Brian Y.
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,