Discrete Lagrange problems with constraints valued in a Lie group

被引:0
|
作者
Chacon, Pablo M. [1 ,2 ]
Fernandez, Antonio [3 ,4 ]
Garcia, Pedro L. [5 ,6 ]
机构
[1] Univ Salamanca, IUFFyM, Plaza Merced 1-4, Salamanca 37008, Spain
[2] Univ Salamanca, Dept Matemat, Plaza Merced 1-4, Salamanca 37008, Spain
[3] Univ Salamanca, IUFFyM, Casas Parque 2, Salamanca 37008, Spain
[4] Univ Salamanca, Dept Matemat Aplicada, Casas Parque 2, Salamanca 37008, Spain
[5] USAL, IUFFyM, Plaza Merced 1-4, Salamanca 37008, Spain
[6] Real Acad Ciencias, Plaza Merced 1-4, Salamanca 37008, Spain
关键词
Cellular complexes; Discrete Lagrange problems; Constraints valued in a Lie group; Euler-Poincaré reduction in discrete field theory; EULER-POINCARE REDUCTION; BUNDLES;
D O I
10.1016/j.difgeo.2022.101974
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Lagrange problem is established in the discrete field theory subject to constraints with values in a Lie group. For the admissible sections that satisfy a certain regularity condition, we prove that the critical sections of such problems are the solutions of a canonically unconstrained variational problem associated with the Lagrange problem (discrete Lagrange multiplier rule). This variational problem has a discrete Cartan 1-form, from which a Noether theory of symmetries and a multisymplectic form formula are established. The whole theory is applied to the Euler-Poincare reduction in the discrete field theory, concluding as an illustration with the remarkable example of the harmonic maps of the discrete plane in the Lie group SO(n).(c) 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Manifolds of Lie-Group-Valued Cocycles and Discrete Cohomology
    Chirvasitu, Alexandru
    Peng, Jun
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2023, 19
  • [2] Lie symmetries of discrete Lagrange systems
    Shi Shen-Yang
    Fu Jing-Li
    Chen Li-Qun
    ACTA PHYSICA SINICA, 2007, 56 (06) : 3060 - 3063
  • [3] Lie group valued, moment maps
    Alekseev, A
    Malkin, A
    Meinrenken, E
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1998, 48 (03) : 445 - 495
  • [4] Lie group valued Koopman eigenfunctions
    Das, Suddhasattwa
    NONLINEARITY, 2023, 36 (05) : 2149 - 2165
  • [5] VARIATIONAL INTEGRATORS FOR DISCRETE LAGRANGE PROBLEMS
    Garcia, Pedro L.
    Fernandez, Antonio
    Rodrigo, Cesar
    JOURNAL OF GEOMETRIC MECHANICS, 2010, 2 (04): : 343 - 374
  • [6] LAGRANGE MULTIPLIERS FOR EVOLUTION PROBLEMS WITH CONSTRAINTS ON THE DERIVATIVES
    Azevedo, A.
    Rodrigues, J. F.
    Santos, L.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2021, 32 (03) : 435 - 448
  • [7] Lagrange's principle in extremum problems with constraints
    Avakov, E. R.
    Magaril-Il'yaev, G. G.
    Tikhomirov, V. M.
    RUSSIAN MATHEMATICAL SURVEYS, 2013, 68 (03) : 401 - 433
  • [8] Problems in Lie group theory
    Boya, LJ
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2003, 5 (03) : S261 - S265
  • [9] Discrete Time Lagrangian Mechanics on Lie Groups,¶with an Application to the Lagrange Top
    A. I. Bobenko
    Yu. B. Suris
    Communications in Mathematical Physics, 1999, 204 : 147 - 188
  • [10] Discrete time Lagrangian mechanics on Lie groups, with an application to the Lagrange top
    Bobenko, AI
    Suris, YB
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 204 (01) : 147 - 188