Intersecting longest paths in chordal graphs

被引:1
|
作者
Harvey, Daniel J. [1 ]
Payne, Michael S. [2 ]
机构
[1] Kyoto Univ, Kyoto, Japan
[2] La Trobe Univ, Bendigo, Australia
基金
澳大利亚研究理事会;
关键词
Graph theory; Transversals; Longest paths; Chordal graphs; NONEMPTY INTERSECTION; PLANAR;
D O I
10.1016/j.disc.2022.113284
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the size of the smallest set of vertices required to intersect every longest path in a chordal graph. Such sets are known as longest path transversals. We show that if omega(G) is the clique number of a chordal graph G, then there is a transversal of order at most 4[omega(G)/5]. We also consider the analogous question for longest cycles, and show that if Gis a 2-connected chordal graph then there is a transversal intersecting all longest cycles of order at most 2[omega(G)/3]. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Intersecting longest paths
    de Rezende, Susanna F.
    Fernandes, Cristina G.
    Martin, Daniel M.
    Wakabayashi, Yoshiko
    DISCRETE MATHEMATICS, 2013, 313 (12) : 1401 - 1408
  • [2] Intersecting longest paths and longest cycles: A survey
    Shabbir, Ayesha
    Zamfirescu, Carol T.
    Zamfirescu, Tudor I.
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2013, 1 (01) : 56 - 76
  • [3] LONGEST PATHS AND CIRCUITS IN GRAPHS
    ZAMFIRESCU, T
    MATHEMATICA SCANDINAVICA, 1976, 38 (02) : 211 - 239
  • [4] Contracting chordal graphs and bipartite graphs to paths and trees
    Heggernes, Pinar
    van't Hof, Pim
    Leveque, Benjamin
    Paul, Christophe
    DISCRETE APPLIED MATHEMATICS, 2014, 164 : 444 - 449
  • [5] Maintaining longest paths in cyclic graphs
    Katriel, I
    Van Hentenryck, P
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING - CP 2005, PROCEEDINGS, 2005, 3709 : 358 - 372
  • [6] Longest paths in circular arc graphs
    Balister, PN
    Györi, E
    Lehel, J
    Schelp, RH
    COMBINATORICS PROBABILITY & COMPUTING, 2004, 13 (03): : 311 - 317
  • [7] Approximating the longest paths in grid graphs
    Zhang, Wen-Qi
    Liu, Yong-Jin
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (39) : 5340 - 5350
  • [8] On Longest Paths in Triangular Lattice Graphs
    Jumani, Ali Dino
    Zamfirescu, Tudor
    UTILITAS MATHEMATICA, 2012, 89 : 269 - 273
  • [9] GRAPHS WITH NONEMPTY INTERSECTION OF LONGEST PATHS
    KLAVZAR, S
    PETKOVSEK, M
    ARS COMBINATORIA, 1990, 29 : 43 - 52
  • [10] Longest paths and longest cycles in graphs with large degree sums
    Schiermeyer, I
    Tewes, M
    GRAPHS AND COMBINATORICS, 2002, 18 (03) : 633 - 643