Modelling the galaxy-halo connection with semi-recurrent neural networks

被引:3
|
作者
Chittenden, Harry George [1 ]
Tojeiro, Rita [1 ]
机构
[1] Univ St Andrews, Sch Phys & Astron, North Haugh, St Andrews KY16 9SS, Scotland
基金
英国科学技术设施理事会;
关键词
galaxies: evolution; galaxies: formation; galaxies: haloes; galaxies: star formation; MASS-METALLICITY RELATION; DARK-MATTER HALOES; STAR-FORMATION HISTORIES; ILLUSTRISTNG SIMULATIONS; ASSEMBLY BIAS; STELLAR MASS; MERGER TREES; COSMIC WEB; SATELLITE; EVOLUTION;
D O I
10.1093/mnras/stac3498
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present an artificial neural network design in which past and present-day properties of dark matter haloes and their local environment are used to predict time-resolved star formation histories and stellar metallicity histories of central and satellite galaxies. Using data from the IllustrisTNG simulations, we train a tensorflow-based neural network with two inputs: a standard layer with static properties of the dark matter halo, such as halo mass and starting time; and a recurrent layer with variables such as overdensity and halo mass accretion rate, evaluated at multiple time steps from 0 <= z less than or similar to 20. The model successfully reproduces key features of the galaxy halo connection, such as the stellar-to-halo mass relation, downsizing, and colour bimodality, for both central and satellite galaxies. We identify mass accretion history as crucial in determining the geometry of the star formation history and trends with halo mass such as downsizing, while environmental variables are important indicators of chemical enrichment. We use these outputs to compute optical spectral energy distributions, and find that they are well matched to the equivalent results in IllustrisTNG, recovering observational statistics such as colour bimodality and mass-magnitude diagrams.
引用
收藏
页码:5670 / 5692
页数:23
相关论文
共 50 条
  • [1] Modelling the galaxy-halo connection with machine learning
    Delgado, Ana Maria
    Wadekar, Digvijay
    Hadzhiyska, Boryana
    Bose, Sownak
    Hernquist, Lars
    Ho, Shirley
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 515 (02) : 2733 - 2746
  • [2] The Evolution of Galaxy Clustering and the Galaxy-Halo Connection
    Wechsler, Risa H.
    PANORAMIC VIEWS OF GALAXY FORMATION AND EVOLUTION, PROCEEDINGS, 2008, 399 : 82 - 89
  • [3] On the galaxy-halo connection in the EAGLE simulation
    Desmond, Harry
    Mao, Yao-Yuan
    Wechsler, Risa H.
    Crain, Robert A.
    Schaye, Joop
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 471 (01) : L11 - L15
  • [4] Extensions to models of the galaxy-halo connection
    Hadzhiyska, Boryana
    Bose, Sownak
    Eisenstein, Daniel
    Hernquist, Lars
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 501 (02) : 1603 - 1620
  • [5] Revealing the galaxy-halo connection in IllustrisTNG
    Bose, Sownak
    Eisenstein, Daniel J.
    Hernquist, Lars
    Pillepich, Annalisa
    Nelson, Dylan
    Marinacci, Federico
    Springel, Volker
    Vogelsberger, Mark
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 490 (04) : 5693 - 5711
  • [6] Introducing decorated HODs: modelling assembly bias in the galaxy-halo connection
    Hearin, Andrew P.
    Zentner, Andrew R.
    van den Bosch, Frank C.
    Campbell, Duncan
    Tollerud, Erik
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 460 (03) : 2552 - 2570
  • [7] Does the galaxy-halo connection vary with environment?
    Dragomir, Radu
    Rodriguez-Puebla, Aldo
    Primack, Joel R.
    Lee, Christoph T.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 476 (01) : 741 - 758
  • [8] The Galaxy-Halo Connection in Low-mass Halos
    Feldmann, Robert
    Faucher-Giguere, Claude-Andre
    Keres, Dusan
    ASTROPHYSICAL JOURNAL LETTERS, 2019, 871 (02)
  • [9] Probing the galaxy-halo connection in UltraVISTA to z ∼ 2
    McCracken, H. J.
    Wolk, M.
    Colombi, S.
    Kilbinger, M.
    Ilbert, O.
    Peirani, S.
    Coupon, J.
    Dunlop, J.
    Milvang-Jensen, B.
    Caputi, K.
    Aussel, H.
    Bethermin, M.
    Le Fevre, O.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 449 (01) : 901 - 916
  • [10] Revealing the Galaxy-Halo Connection through Machine Learning
    Hausen, Ryan
    Robertson, Brant E. E.
    Zhu, Hanjue
    Gnedin, Nickolay Y. Y.
    Madau, Piero
    Schneider, Evan E. E.
    Villasenor, Bruno
    Drakos, Nicole E. E.
    ASTROPHYSICAL JOURNAL, 2023, 945 (02):