Potential cost savings of large-scale blue hydrogen production via sorption-enhanced steam reforming process

被引:2
|
作者
Udemu, Chinonyelum [1 ]
Font-Palma, Carolina [1 ]
机构
[1] Univ Hull, Sch Engn, Kingston Upon Hull HU6 7RX, England
关键词
Gas -heated reforming; Sorption -enhanced steam reforming; Economic analysis; Hydrogen; CCS; H-2; PRODUCTION; CO2; CAPTURE; BED REACTOR; TECHNOECONOMIC ANALYSIS; METHANE; SIMULATION; PLANT; DECOMPOSITION; GASIFICATION; TECHNOLOGIES;
D O I
10.1016/j.enconman.2024.118132
中图分类号
O414.1 [热力学];
学科分类号
摘要
As countries work towards achieving net-zero emissions, the need for cleaner fuels has become increasingly urgent. Hydrogen produced from fossil fuels with carbon capture and storage (blue hydrogen) has the potential to play a significant role in the transition to a low-carbon economy. This study examined the technical and economic potential of blue hydrogen produced at 600 MWth(LHV) and scaled up to 1000 MWth(LHV) by benchmarking sorption-enhanced steam reforming process against steam methane reforming (SMR), autothermal gasheated reforming (ATR-GHR) integrated with carbon capture and storage (CCS), and SMR with CCS. Aspen Plus (R) was used to develop the process model, which was validated using literature data. Cost sensitivity analyses were also performed on two key indicators: levelised cost of hydrogen and CO2 avoidance cost by varying natural gas price, electricity price, CO2 transport and storage cost, and carbon price. Results indicate that, at a carbon price of 83 pound/tCO2e, the LCOH for SE-SR of methane is the lowest at 2.85 pound/kgH2, which is 12.58% and 22.55% lower than that of ATR-GHR with CCS and SMR plant with CCS, respectively. The LCOH of ATR-GHR with CCS and SMR plant with CCS was estimated to be 3.26 and 3.68 pound/kgH2, respectively. The CO2 avoidance cost was also observed to be lowest for SE-SR, followed by ATR-GHR with CCS, then SMR plant with CCS, and was observed to reduce as the plant scaled to 1000 MWth(LHV) for these technologies.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] SORPTION-ENHANCED STEAM REFORMING OF ETHANOL FOR HYDROGEN PRODUCTION
    Avendano, R.
    Dieuzeide, M. L.
    Bonelli, P.
    Amadeo, N.
    LATIN AMERICAN APPLIED RESEARCH, 2020, 50 (02) : 121 - 126
  • [2] Hydrogen production by sorption-enhanced steam reforming of glycerol
    Dou, Binlin
    Dupont, Valerie
    Rickett, Gavin
    Blakeman, Neil
    Williams, Paul T.
    Chen, Haisheng
    Ding, Yulong
    Ghadiri, Mojtaba
    BIORESOURCE TECHNOLOGY, 2009, 100 (14) : 3540 - 3547
  • [3] Production of high-purity hydrogen by sorption-enhanced steam reforming process of methanol
    Xiang Wu
    Sufang Wu
    Journal of Energy Chemistry, 2015, (03) : 315 - 321
  • [4] Production of high-purity hydrogen by sorption-enhanced steam reforming process of methanol
    Xiang Wu
    Sufang Wu
    Journal of Energy Chemistry, 2015, 24 (03) : 315 - 321
  • [5] Production of high-purity hydrogen by sorption-enhanced steam reforming process of methanol
    Wu, Xiang
    Wu, Sufang
    JOURNAL OF ENERGY CHEMISTRY, 2015, 24 (03) : 315 - 321
  • [6] Hydrogen production via sorption-enhanced catalytic steam reforming of bio-oil
    Xie, Huaqing
    Yu, Qingbo
    Zuo, Zongliang
    Han, Zhicheng
    Yao, Xin
    Qin, Qin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (04) : 2345 - 2353
  • [7] Hydrogen Production from Glycerol and Plastics by Sorption-Enhanced Steam Reforming
    Chunakiat, Petch
    Panarmasar, Nipitpon
    Kuchonthara, Prapan
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (49) : 21057 - 21066
  • [8] Hydrogen Production by Sorption-Enhanced Steam Glycerol Reforming: Sorption Kinetics and Reactor Simulation
    Iliuta, Ion
    Radfarnia, Hamid R.
    Iliuta, Maria C.
    AICHE JOURNAL, 2013, 59 (06) : 2105 - 2118
  • [9] Advancements in sorption-enhanced steam reforming for clean hydrogen production: A comprehensive review
    Farooqi, Ahmad Salam
    Allam, Abdelwahab N.
    Shahid, Muhammad Zubair
    Aqil, Anas
    Fajri, Kevin
    Park, Sunhwa
    Abdelaziz, Omar Y.
    Abdelnaby, Mahmoud M.
    Hossain, Mohammad M.
    Habib, Mohamed A.
    ul Hasnain, Syed Muhammad Wajahat
    Nabavi, Ali
    Zhu, Mingming
    Manovic, Vasilije
    Nemitallah, Medhat A.
    CARBON CAPTURE SCIENCE & TECHNOLOGY, 2025, 14
  • [10] Evaluation of the Effect of CaO on Hydrogen Production by Sorption-Enhanced Steam Methane Reforming
    Luo, Yun
    Chen, Juan
    Wang, Tao
    ACS OMEGA, 2024, 9 (05): : 5330 - 5337