Strongly quasi-local algebras and their K-theories

被引:3
|
作者
Bao, Hengda [1 ]
Chen, Xiaoman [1 ]
Zhang, Jiawen [1 ]
机构
[1] Fudan Univ, Sch Math Sci, 220 Handan Rd, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Roe algebras; quasi-local algebras; strong quasi-locality; coarse embeddability; INDEX THEOREM; CONJECTURE;
D O I
10.4171/JNCG/499
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a notion of strongly quasi-local algebras. They are defined for each discrete metric space with bounded geometry, and sit between the Roe algebra and the quasi -local algebra. We show that strongly quasi-local algebras are coarse invariants, hence encoding coarse geometric information of the underlying spaces. We prove that for a discrete metric space with bounded geometry which admits a coarse embedding into a Hilbert space, the inclusion of the Roe algebra into the strongly quasi-local algebra induces an isomorphism in K-theory.
引用
收藏
页码:241 / 285
页数:45
相关论文
共 50 条
  • [1] Bivariant K-theories for C*-algebras
    Nagy, G
    K-THEORY, 2000, 19 (01): : 47 - 108
  • [2] Quasi-local algebras and asymptotic expanders
    Li, Kang
    Nowak, Piotr
    Spakula, Jan
    Zhang, Jiawen
    GROUPS GEOMETRY AND DYNAMICS, 2021, 15 (02) : 655 - 682
  • [3] Stonean quasi-local Lukasiewicz algebras
    Lacava, F
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2001, 4B (03): : 759 - 766
  • [4] MARKOV STATES ON QUASI-LOCAL ALGEBRAS
    Fidaleo, Francesco
    QUANTUM PROBABILITY AND INFINITE DIMENSIONAL ANALYSIS, PROCEEDINGS, 2007, 20 : 196 - 204
  • [5] Embeddings of von Neumann algebras into uniform Roe algebras and quasi-local algebras
    Baudier, Florent P.
    Braga, Bruno M.
    Farah, Ilijas
    Vignati, Alessandro
    Willett, Rufus
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (01)
  • [6] ON THE EQUIVALENCE OF K-THEORIES
    SUSLIN, AA
    COMMUNICATIONS IN ALGEBRA, 1981, 9 (15) : 1559 - 1566
  • [7] VARIATIONAL PRINCIPLE FOR QUASI-LOCAL ALGEBRAS OVER THE LATTICE
    KISHIMOTO, A
    ANNALES DE L INSTITUT HENRI POINCARE SECTION A PHYSIQUE THEORIQUE, 1979, 30 (01): : 51 - 59
  • [8] Real K-theories
    Karoubi, Max
    ISRAEL JOURNAL OF MATHEMATICS, 2023, 253 (01) : 91 - 99
  • [9] A quasi-local characterisation of LP-Roe algebras
    Li, Kang
    Wang, Zhijie
    Zhang, Jiawen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 474 (02) : 1213 - 1237
  • [10] Real K-theories
    Max Karoubi
    Israel Journal of Mathematics, 2023, 253 : 91 - 99