Wavelet Characterizations of Operator-Valued Hardy Spaces

被引:1
|
作者
Hong, Guixiang [1 ]
Wang, Wenhua [1 ]
Wu, Xinfeng [2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[2] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
NONCOMMUTATIVE KHINTCHINE; INEQUALITIES;
D O I
10.1093/imrn/rnac213
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a von Neumann algebra equipped with a normal semifinite faithful trace tau, and H-p (R, M)(1 <= p <= infinity) be the operator-valued Hardy spaces introduced by Tao Mei. In this paper, we characterize the operator-valued column Hardy space H-p(c)(R, M)(1 <= p <= infinity) by using several square functions involving wavelets, which corresponds to Meyer's wavelet characterizations of the classical Hardy space when p = 1.
引用
收藏
页码:13978 / 14005
页数:28
相关论文
共 50 条