Remaining Useful Life Prediction of Lithium-Ion Batteries Based on a Cubic Polynomial Degradation Model and Envelope Extraction

被引:3
|
作者
Su, Kangze [1 ]
Deng, Biao [1 ]
Tang, Shengjin [1 ]
Sun, Xiaoyan [2 ]
Fang, Pengya [3 ]
Si, Xiaosheng [4 ]
Han, Xuebing [5 ]
机构
[1] Rocket Force Univ Engn, Dept Mech Engn, Xian 710025, Peoples R China
[2] Rocket Force Univ Engn, Dept Commun Engn, Xian 710025, Peoples R China
[3] Zhengzhou Univ Aeronaut, Sch Aero Engine, Zhengzhou 450046, Peoples R China
[4] Rocket Force Univ Engn, Zhijian Lab, Xian 710025, Peoples R China
[5] Tsinghua Univ, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
来源
BATTERIES-BASEL | 2023年 / 9卷 / 09期
关键词
lithium-ion batteries; remaining useful life; cubic polynomial function; envelope extraction; measurement error; Wiener process; WIENER PROCESS; HEALTH; STATE; PROGNOSTICS;
D O I
10.3390/batteries9090441
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Remaining useful life (RUL) prediction has become one of the key technologies for reducing costs and improving safety of lithium-ion batteries. To our knowledge, it is difficult for existing nonlinear degradation models of the Wiener process to describe the complex degradation process of lithium-ion batteries, and there is a problem with low precision in parameter estimation. Therefore, this paper proposes a method for predicting the RUL of lithium-ion batteries based on a cubic polynomial degradation model and envelope extraction. Firstly, based on the degradation characteristics of lithium-ion batteries, a cubic polynomial function is used to fit the degradation trajectory and compared with other nonlinear degradation models for verification. Secondly, a subjective parameter estimation method based on envelope extraction is proposed that estimates the actual degradation trajectory by using the average of the upper and lower envelope curves of the degradation data of lithium-ion batteries and uses the maximum likelihood estimation (MLE) method to estimate the unknown model parameters in two steps. Finally, for comparison with several typical nonlinear models, experiments are carried out based on the practical degradation data of lithium-ion batteries. The effectiveness of the proposed method to improve the accuracy of RUL prediction for lithium-ion batteries was demonstrated in terms of the mean square error (MSE) of the model and MSE of RUL prediction.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Remaining Useful Life Prediction of Lithium-ion Batteries Based on a Hybrid Model
    Lv, Haizhen
    Shen, Dongxu
    Yang, Zhigang
    2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, : 1003 - 1008
  • [2] Online Remaining Useful Life Prediction of Lithium-ion Batteries Based on Hybrid Model
    Sun, Jing
    Yan, Huiyi
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2025, 172 (04)
  • [3] Probabilistic Prediction of Remaining Useful Life of Lithium-ion Batteries
    Zhang, Renjie
    Li, Jialin
    Chen, Yifei
    Tan, Shiyi
    Jiang, Jiaxu
    Yuan, Xinmei
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1820 - 1824
  • [4] Remaining useful life prediction of lithium-ion batteries using a hybrid model
    Yao, Fang
    He, Wenxuan
    Wu, Youxi
    Ding, Fei
    Meng, Defang
    ENERGY, 2022, 248
  • [5] Remaining Useful Life Estimation of Lithium-ion Batteries based on a new Capacity Degradation model
    Guha, Arijit
    Vaisakh, K. V.
    Patra, Amit
    2016 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO, ASIA-PACIFIC (ITEC ASIA-PACIFIC), 2016, : 555 - 560
  • [6] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on a Hybrid Deep Learning Model
    Chen, Chao
    Wei, Jie
    Li, Zhenhua
    PROCESSES, 2023, 11 (08)
  • [7] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Exponential Model and Particle Filter
    Zhang, Lijun
    Mu, Zhongqiang
    Sun, Changyan
    IEEE ACCESS, 2018, 6 : 17729 - 17740
  • [8] Remaining useful life prediction of lithium-ion batteries based on autoregression with exogenous variables model
    Huang, Zhelin
    Ma, Zhihua
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 252
  • [9] Remaining useful life prediction for lithium-ion batteries in later period based on a fusion model
    Cai, Li
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (02) : 302 - 315
  • [10] A health indicator extraction based on surface temperature for lithium-ion batteries remaining useful life prediction
    Feng, Hailin
    Song, Dandan
    JOURNAL OF ENERGY STORAGE, 2021, 34