Hyperspectral Image Classification Based on Transposed Convolutional Neural Network Transformer

被引:1
|
作者
Liu, Baisen [1 ,2 ,3 ]
Jia, Zongting [1 ]
Guo, Penggang [1 ]
Kong, Weili [1 ]
机构
[1] Harbin Univ Sci & Technol, Sch Measurement & Commun Engn, Harbin 150080, Peoples R China
[2] Heilongjiang Inst Technol, Coll Elect & Informat Engn, Harbin 150001, Peoples R China
[3] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin 150001, Peoples R China
关键词
spectral inception; spatial transposed inception; cross-cosine attention mechanism; hyperspectral image; CNN; transformer; REMOTE-SENSING TECHNIQUE; CNN;
D O I
10.3390/electronics12183879
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hyperspectral imaging is a technique that captures images of objects within a wide spectrum range, allowing for the acquisition of additional spectral information to reveal subtle variations and compositional components in the objects. Convolutional neural networks (CNNs) have shown remarkable feature extraction capabilities for HSI classification, but their ability to capture deep semantic features is limited. On the other hand, transformer models based on attention mechanisms excel at handling sequential data and have demonstrated great potential in various applications. Motivated by these two facts, this paper proposes a multiscale spectral-spatial transposed transformer (MSSTT) that captures the high-level semantic features of an HSI while preserving the spectral information as much as possible. The MSSTT consists of a spectral-spatial Inception module that extracts spectral and spatial features using multiscale convolutional kernels, and a spatial transpose Inception module that further enhances and extracts spatial information. A transformer model with a cosine attention mechanism is also included to extract deep semantic features, with the QKV matrix constrained to ensure the output remains within the activation range. Finally, the classification results are obtained by applying a linear layer to the learnable tokens. The experimental results from three public datasets show that the proposed MSSTT outperforms other deep learning methods in HSI classification. On the India Pines, Pavia University, and Salinas datasets, accuracies of 97.19%, 99.47%, and 99.90% were achieved, respectively, with a training set proportion of 5%.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Convolutional Transformer Network for Hyperspectral Image Classification
    Zhao, Zhengang
    Hu, Dan
    Wang, Hao
    Yu, Xianchuan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [2] Grafting Transformer on Automatically Designed Convolutional Neural Network for Hyperspectral Image Classification
    Xue, Xizhe
    Zhang, Haokui
    Fang, Bei
    Bai, Zongwen
    Li, Ying
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] Hyperspectral Image Classification Based on Hypergraph and Convolutional Neural Network
    Liu Yuzhen
    Jiang Zhengquan
    Mai Fei
    Zhang Chunhua
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (11)
  • [4] Hyperspectral Image Classification Based on Fusion of Convolutional Neural Network and Graph Network
    Gao, Luyao
    Xiao, Shulin
    Hu, Changhong
    Yan, Yang
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [5] Hyperspectral Image Classification Based on Spectral Multiscale Convolutional Neural Network
    Shi, Cuiping
    Sun, Jingwei
    Wang, Liguo
    REMOTE SENSING, 2022, 14 (08)
  • [6] Hyperspectral Image Classification Based on Convolutional Neural Network and Dimension Reduction
    Liu, Xuefeng
    Sun, Qiaoqiao
    Liu, Bin
    Huang, Biao
    Fu, Min
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 1686 - 1690
  • [7] Hyperspectral image classification based on convolutional neural network and random forest
    Wang, Aili
    Wang, Ying
    Chen, Yushi
    REMOTE SENSING LETTERS, 2019, 10 (11) : 1086 - 1094
  • [8] Hyperspectral Image Classification Based on Hyperpixel Segmentation and Convolutional Neural Network
    Chen, Rujun
    Pu, Yunwei
    Wu, Fengzhen
    Liu, Yuceng
    Qi, Li
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (16)
  • [9] Hyperspectral Image Classification Based on Dilated Convolutional Attention Neural Network
    Zhang Xiangdong
    Wang Tengjun
    Zhu Shaojun
    Yang Yun
    ACTA OPTICA SINICA, 2021, 41 (03)
  • [10] Hyperspectral Remote Sensing Image Classification Based on Convolutional Neural Network
    Dai, Xiangyang
    Xue, Wei
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 10373 - 10377