FASDetect as a machine learning-based screening app for FASD in youth with ADHD

被引:5
|
作者
Ehrig, Lukas [1 ,2 ]
Wagner, Ann-Christin [2 ]
Wolter, Heike [2 ]
Correll, Christoph U. U. [2 ,3 ,4 ]
Geisel, Olga [2 ]
Konigorski, Stefan [1 ,2 ,5 ,6 ]
机构
[1] Univ Potsdam, Hasso Plattner Inst Digital Engn, Digital Hlth Ctr, Potsdam, Germany
[2] Charite Univ Med Berlin, Dept Child & Adolescent Psychiat, Berlin, Germany
[3] Zucker Hillside Hosp, Dept Psychiat, Northwell Hlth, Glen Oaks, NY USA
[4] Donald & Barbara Zucker Sch Med Hofstra Northwell, Dept Psychiat & Mol Med, Hempstead, NY USA
[5] Icahn Sch Med Mt Sinai, Hasso Plattner Inst Digital Hlth Mt Sinai, New York, NY 10029 USA
[6] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA
关键词
FETAL ALCOHOL SYNDROME; SPECTRUM DISORDERS; CHILDREN; ADOLESCENTS; INDIVIDUALS; DIAGNOSIS;
D O I
10.1038/s41746-023-00864-1
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Fetal alcohol-spectrum disorder (FASD) is underdiagnosed and often misdiagnosed as attention-deficit/hyperactivity disorder (ADHD). Here, we develop a screening tool for FASD in youth with ADHD symptoms. To develop the prediction model, medical record data from a German University outpatient unit are assessed including 275 patients aged 0-19 years old with FASD with or without ADHD and 170 patients with ADHD without FASD aged 0-19 years old. We train 6 machine learning models based on 13 selected variables and evaluate their performance. Random forest models yield the best prediction models with a cross-validated AUC of 0.92 (95% confidence interval [0.84, 0.99]). Follow-up analyses indicate that a random forest model with 6 variables - body length and head circumference at birth, IQ, socially intrusive behaviour, poor memory and sleep disturbance - yields equivalent predictive accuracy. We implement the prediction model in a web-based app called FASDetect - a user-friendly, clinically scalable FASD risk calculator that is freely available at https://fasdetect.dhc-lab.hpi.de.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] FASDetect as a machine learning-based screening app for FASD in youth with ADHD
    Lukas Ehrig
    Ann-Christin Wagner
    Heike Wolter
    Christoph U. Correll
    Olga Geisel
    Stefan Konigorski
    npj Digital Medicine, 6
  • [2] Marigold: a machine learning-based web app for zebrafish pose tracking
    Teicher, Gregory
    Riffe, R. Madison
    Barnaby, Wayne
    Martin, Gabrielle
    Clayton, Benjamin E.
    Trapani, Josef G.
    Downes, Gerald B.
    BMC BIOINFORMATICS, 2025, 26 (01):
  • [3] Screening for Adulthood ADHD and Comorbidities in a Tertiary Mental Health Center Using EarlyDetect: A Machine Learning-Based Pilot Study
    Liu, Yang S.
    Cao, Bo
    Chokka, Pratap R.
    JOURNAL OF ATTENTION DISORDERS, 2023, 27 (03) : 324 - 331
  • [4] A machine learning-based screening tool for genetic syndromes in children
    Mensah, Martin Atta
    Ott, Claus-Eric
    Horn, Denise
    Pantel, Jean Tori
    LANCET DIGITAL HEALTH, 2022, 4 (05): : E295 - E295
  • [5] Retail store location screening: A machine learning-based approach
    Lu, Jialiang
    Zheng, Xu
    Nervino, Esterina
    Li, Yanzhi
    Xu, Zhihua
    Xu, Yabo
    JOURNAL OF RETAILING AND CONSUMER SERVICES, 2024, 77
  • [6] Machine Learning-Based Toxicological Modeling for Screening Environmental Obesogens
    Wu, Siying
    Wang, Linping
    Schlenk, Daniel
    Liu, Jing
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2024, 58 (41) : 18133 - 18144
  • [7] PermPress: Machine Learning-Based Pipeline to Evaluate Permissions in App Privacy Policies
    Rahman, Muhammad Sajidur
    Naghavi, Pirouz
    Kojusner, Blas
    Afroz, Sadia
    Williams, Byron
    Rampazzi, Sara
    Bindschaedler, Vincent
    IEEE ACCESS, 2022, 10 : 89248 - 89269
  • [8] Analysis of Permission Selection Techniques in Machine Learning-based Malicious App Detection
    Park, Jihyeon
    Kang, Munyeong
    Cho, Seong-je
    Han, Hyoil
    Suh, Kyoungwon
    2020 IEEE THIRD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE 2020), 2020, : 92 - 99
  • [9] Machine learning-based screening of complex molecules for polymer solar cells
    Jorgensen, Peter Bjorn
    Mesta, Murat
    Shil, Suranjan
    Lastra, Juan Maria Garcia
    Jacobsen, Karsten Wedel
    Thygesen, Kristian Sommer
    Schmidt, Mikkel N.
    JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (24):
  • [10] A machine learning-based screening tool for genetic syndromes in children reply
    Porras, Antonio R.
    Rosenbaum, Kenneth
    Tor-Diez, Carlos
    Summar, Marshall
    Linguraru, Marius George
    LANCET DIGITAL HEALTH, 2022, 4 (05): : E296 - E296