Optimization of metal-supported solid oxide fuel cells with a focus on mass transport

被引:15
|
作者
Hu, Boxun [1 ]
Lau, Grace [1 ]
Song, Dong [2 ]
Fukuyama, Yosuke [2 ]
Tucker, Michael C. [1 ,3 ]
机构
[1] Lawrence Berkeley Natl Lab, Energy Convers Grp, Berkeley, CA 94720 USA
[2] Nissan Motor Co Ltd, EV Syst Lab, Nissan Res Ctr, 1 Natsushima Cho, Yokosuka, Kanagawa 2378523, Japan
[3] LBNL, 1 Cyclotron Rd,MS 62-203, Berkeley, CA 94720 USA
关键词
Mass transport; Tape-casting; Infiltration; Thickness; Porosity; Metal-supported solid oxide fuel cell; PERFORMANCE; POWER; SOFCS;
D O I
10.1016/j.jpowsour.2022.232402
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Performance of symmetric-architecture metal-supported solid oxide fuel cells was improved significantly by optimizing the catalyst infiltration process and metal support structure. Optimization of component structure and processing parameters was performed during tape-casting and fabrication of button cells. Mass transport of oxygen in the metal support was identified as a major limitation. To overcome this limitation, pore former loading and thickness of the metal support (130-250 mu m) were optimized. The catalyst infiltration process was also improved by studying the impact of firing temperature (400 degrees C-900 degrees C) and infiltration cycle numbers (1-15). The maximum power density of the optimized cell was 0.9 W cm-2 at 700 degrees C using hydrogen as a fuel, a three-fold increase over the baseline cell performance. The degradation rate of optimized cells at 550 degrees C, 600 degrees C, and 700 degrees C was 2%, 4.5%, and 5.5% per 100 h, respectively. The phenomena of mass transport, catalyst coarsening, and chromium poisoning on the catalyst were analyzed by electrochemical impedance spectroscopy and scanning electron microscopy.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Metal-supported solid oxide fuel cells
    Villarreal, I
    Jacobson, C
    Leming, A
    Matus, Y
    Visco, S
    De Jonghe, L
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (09) : A178 - A179
  • [2] Failure Mechanism and Optimization of Metal-Supported Solid Oxide Fuel Cells
    Du, Pengxuan
    Wu, Jun
    Li, Zongbao
    Wang, Xin
    Jia, Lichao
    MATERIALS, 2023, 16 (11)
  • [3] Development of metal-supported solid oxide fuel cells
    Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
    Zhan, Z. (zzhan@mail.sic.ac.cn), 1600, Chinese Ceramic Society (41):
  • [4] Development of Metal-Supported Solid Oxide Fuel Cells
    Franco, Th.
    Haydn, M.
    Muecke, R.
    Weber, A.
    Ruettinger, M.
    Buechler, O.
    Uhlenbruck, S.
    Menzler, N. H.
    Venskutonis, A.
    Sigl, L. S.
    SOLID OXIDE FUEL CELLS 12 (SOFC XII), 2011, 35 (01): : 343 - 349
  • [5] Mass Transfer Analysis of Metal-Supported and Anode-Supported Solid Oxide Fuel Cells
    Park, Joonguen
    Kim, Sunyoung
    Bae, Joongmyeon
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2010, 34 (03) : 317 - 324
  • [6] Metal-Supported Solid Oxide Fuel Cells with Impregnated Electrodes
    Zhou, Yucun
    Zhan, Zhongliang
    Wang, Shaorong
    SOLID OXIDE FUEL CELLS 13 (SOFC-XIII), 2013, 57 (01): : 877 - 883
  • [7] Nanostructure Electrodes for Metal-supported Solid Oxide Fuel Cells
    Zhan, Zhongliang
    Zhou, Yucun
    Wang, Shaorong
    Liu, Xuejiao
    Meng, Xie
    Wen, Tinglian
    SOLID OXIDE FUEL CELLS 13 (SOFC-XIII), 2013, 57 (01): : 925 - 931
  • [8] Metal-Supported Solid Oxide Fuel Cells with a Simple Structure
    Zhou, Yucun
    Ye, Xiaofeng
    Li, Junliang
    Zhan, Zhongliang
    Wang, Shaorong
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (03) : F332 - F336
  • [9] Coating developments for Metal-supported Solid Oxide Fuel Cells
    Stange, M.
    Denonville, C.
    Larring, Y.
    Haavik, C.
    Brevet, A.
    Montani, A.
    Sicardy, O.
    Mougin, J.
    Larsson, P. O.
    SOLID OXIDE FUEL CELLS 13 (SOFC-XIII), 2013, 57 (01): : 511 - 520
  • [10] Manufacturing and characterization of metal-supported solid oxide fuel cells
    Blennow, Peter
    Hjelm, Johan
    Klemenso, Trine
    Ramousse, Severine
    Kromp, Alexander
    Leonide, Andre
    Weber, Andre
    JOURNAL OF POWER SOURCES, 2011, 196 (17) : 7117 - 7125