Underactuated unmanned surface vehicles formation of obstacle avoidance and assembly: A disturbed fluid-based solution

被引:0
|
作者
Liu, Yiping [1 ]
Zhang, Jianqiang [1 ]
Sui, Bowen [1 ]
Zhang, Yuanyuan [1 ]
机构
[1] Naval Univ Engn, Coll Weaponry Engn, 717 Jiefang Ave, Wuhan 430000, Hubei, Peoples R China
来源
MEASUREMENT & CONTROL | 2024年 / 57卷 / 07期
关键词
Unmanned surface vehicle; virtual structure method; interfered fluid dynamical system; formation flocking; formation obstacle avoidance; local path planning;
D O I
10.1177/00202940241226854
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unmanned surface vehicles (USVs) are highly manoeuvrable and autonomous, and hold significant potential for both military and civilian applications, particularly in formation operations. However, because of their underactuated nature, USVs struggle to navigate in complex maritime conditions during formation. At present, most of the technology is devoted to Unmanned Areial Vehicles and ground robots; these methods cannot be well applied to underactuated USVs. Moreover, the rationality of local path planning decision-making for underactuated USVs formation is still lacking. This study proposes an interfered fluid dynamic system (IFDS)-based local path planning method, called USV-IFDS, specifically designed for the formation of underactuated USVs. This method incorporates the IFDS obstacle avoidance approach, while adapting it through modifications and the inclusion of the kinematic constraints of USVs, thereby enhancing its applicability to the maritime environment. By decomposing the flow field velocity vector and implementing a formation control strategy, we effectively address the challenges in forming underactuated USVs and enhance the efficiency of USV formation local path planning. The proposed formation technique is predicated on the highly robust virtual structure method. Simulations of formation local path planning indicate that our method produces smooth paths, therefore validating its practical applicability to underactuated USV formations.
引用
收藏
页码:992 / 1003
页数:12
相关论文
共 50 条
  • [1] Formation Obstacle Avoidance: A Fluid-Based Solution
    Wu, Jianfa
    Wang, Honglun
    Li, Na
    Su, Zikang
    IEEE SYSTEMS JOURNAL, 2020, 14 (01): : 1479 - 1490
  • [2] Distributed formation control with obstacle avoidance for multiple underactuated unmanned surface vehicles
    Tang, Xiangyu
    Yu, Jianglong
    Li, Xiaoduo
    Dong, Xiwang
    Ren, Zhang
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (12):
  • [3] A Formation Control and Obstacle Avoidance Method for Multiple Unmanned Surface Vehicles
    Liu, Guanqun
    Wen, Naifeng
    Long, Feifei
    Zhang, Rubo
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (12)
  • [4] A COLREGs-based obstacle avoidance approach for unmanned surface vehicles
    Wang, Yanlong
    Yu, Xuemin
    Liang, Xu
    Li, Baoan
    OCEAN ENGINEERING, 2018, 169 : 110 - 124
  • [5] Autonomous navigation and obstacle avoidance for unmanned surface vehicles
    Larson, Jacoby
    Bruch, Michael
    Ebken, John
    UNMANNED SYSTEMS TECHNOLOGY VIII, PTS 1 AND 2, 2006, 6230
  • [6] A Research on Intelligent Obstacle Avoidance for Unmanned Surface Vehicles
    Tong Xinchi
    Zhang Huajun
    Chen Wenwen
    Zhao Peimin
    Leng Zhiwen
    Cheng Kai
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 1431 - 1435
  • [7] Autonomous Obstacle Avoidance Algorithm for Unmanned Surface Vehicles Based on an Improved Velocity Obstacle Method
    Ren, Jia
    Zhang, Jing
    Cui, Yani
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (09)
  • [8] Optimal Formation Control of Unmanned Aerial Vehicles with Obstacle Avoidance
    Rajasree, R.
    Jisha, V. R.
    2015 INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICCICCT), 2015, : 163 - 168
  • [9] Obstacle Avoidance Approaches for Autonomous Navigation of Unmanned Surface Vehicles
    Polvara, Riccardo
    Sharma, Sanjay
    Wan, Jian
    Manning, Andrew
    Sutton, Robert
    JOURNAL OF NAVIGATION, 2018, 71 (01): : 241 - 256
  • [10] TRAJECTORY REAL-TIME OBSTACLE AVOIDANCE FOR UNDERACTUATED UNMANNED SURFACE VESSELS
    Soltan, Reza A.
    Ashrafiuon, Hashem
    Muske, Kenneth R.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 7, PTS A AND B, 2010, : 1059 - 1067