A rigidity result for holomorphic quadratic differentials of finite norm in the unit disk

被引:0
|
作者
Gao, Qiang [1 ,2 ]
机构
[1] Shenzhen Univ, Sch Math Sci, Shenzhen, Guangdong, Peoples R China
[2] Shenzhen Univ, Sch Math Sci, Shenzhen 518060, Guangdong, Peoples R China
关键词
FUNDAMENTAL THEOREM; GEOMETRY;
D O I
10.1112/blms.12936
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let phi dz2$\varphi dz<^>2$ be a holomorphic quadratic differential of finite norm in the unit disk D$\mathbb {D}$. Let D$\mathbb {D}$ be equipped with the metric |phi||dz2|$| \varphi || dz<^>2 |$. In this paper, we prove that a geodesic-preserving map of the unit disk into itself is affine. A map is called geodesic-preserving if the image of each geodesic is a geodesic. We make no assumptions on the continuity of such a map.
引用
收藏
页码:352 / 363
页数:12
相关论文
共 50 条