State-of-Health Estimation of Lithium-ion Batteries Based on WOA-CNN-LSTM-Attention

被引:1
|
作者
Li, Zhiwei [1 ,2 ]
Li, Yong [3 ,4 ]
Liao, Chenglin [1 ,2 ]
Zhang, Chengzhong [1 ,2 ]
Wang, Liye [1 ,2 ]
Wang, Lifang [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Elect Engn, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Univ Sci & Technol Beijing, Shunde Innovat Sch, Foshan, Peoples R China
[4] Univ Sci & Technol Beijing, Sch Mech Engn, Beijing, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
SOH; LSTM; CNN-LSTM-attention; CAPACITY ESTIMATION;
D O I
10.1109/ICCCBDA56900.2023.10154659
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, five health characteristics are extracted from battery charging and discharging data, and combined with the whale optimization algorithm, the performance of the two models in battery health state estimation is compared, namely, the long-short term memory neural network and the long-short term memory neural network with attention mechanism. On this basis, the convolution neural network module is added to extract hidden features from the data, so that the model can obtain more information, thus improving the performance of the model. Finally, the relative error of the improved model for battery health state estimation is controlled within 1.6%.
引用
收藏
页码:572 / 578
页数:7
相关论文
共 50 条
  • [1] State-of-Health Estimation of Lithium-ion Batteries Based on CNN-LSTM-Attention
    Ding, Dong
    Mao, Songheng
    Fan, Yuan
    2024 3RD CONFERENCE ON FULLY ACTUATED SYSTEM THEORY AND APPLICATIONS, FASTA 2024, 2024, : 837 - 842
  • [2] An improved CNN-LSTM model-based state-of-health estimation approach for lithium-ion batteries
    Xu, Huanwei
    Wu, Lingfeng
    Xiong, Shizhe
    Li, Wei
    Garg, Akhil
    Gao, Liang
    ENERGY, 2023, 276
  • [3] Online State-of-Health Estimation for the Lithium-Ion Battery Based on An LSTM Neural Network with Attention Mechanism
    Zhang, Jiachang
    Hou, Jie
    Zhang, Zijian
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 1334 - 1339
  • [4] Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation
    Wang, Huan
    Li, Yan-Fu
    Zhang, Ying
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2023, 188
  • [5] State-of-Health Prediction of Lithium-Ion Batteries Based on CNN-BiLSTM-AM
    Tian, Yukai
    Wen, Jie
    Yang, Yanru
    Shi, Yuanhao
    Zeng, Jianchao
    BATTERIES-BASEL, 2022, 8 (10):
  • [6] State-of-health estimation for lithium-ion batteries based on Bi-LSTM-AM and LLE feature extraction
    Wang, Wentao
    Yang, Gaoyuan
    Li, Muxi
    Yan, Zuoyi
    Zhang, Lisheng
    Yu, Hanqing
    Yang, Kaiyi
    Jiang, Pengchang
    Hua, Wei
    Zhang, Yong
    Zou, Bosong
    Yang, Kai
    FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [7] Domain generalization-based state-of-health estimation of lithium-ion batteries
    Chen, Liping
    Bao, Xinyuan
    Lopes, Antonio M.
    Li, Xin
    Kong, Huifang
    Chai, Yi
    Li, Penghua
    JOURNAL OF POWER SOURCES, 2024, 610
  • [8] State-of-health estimation of lithium-ion batteries based on QPSO-BPNN
    Yao, Yongming
    Li, Fei
    Li, Haofa
    Liu, Junchi
    Wang, Xindi
    Li, Tianyu
    IONICS, 2025, 31 (02) : 1437 - 1449
  • [9] Research on State-of-Health Estimation for Lithium-Ion Batteries Based on the Charging Phase
    Du, Changqing
    Qi, Rui
    Ren, Zhong
    Xiao, Di
    ENERGIES, 2023, 16 (03)
  • [10] Hybrid deep neural network with dimension attention for state-of-health estimation of Lithium-ion Batteries
    Bao, Xinyuan
    Chen, Liping
    Lopes, Antonio M.
    Li, Xin
    Xie, Siqiang
    Li, Penghua
    Chen, YangQuan
    ENERGY, 2023, 278