Multi-operator Variant of Differential Evolution and its Application in Classification of COVID-19 CT-scan Images

被引:0
|
作者
Aggarwal, Sakshi [1 ]
Mishra, Krishn K. [1 ]
机构
[1] Motilal Nehru Natl Inst Engn & Technol, Dept Comp Sci & Engn, Allahabad, India
关键词
Feature selection; MODE; Polykernel SVM; FEATURE-SELECTION; ALGORITHMS; OPTIMIZATION; ENSEMBLE; MECHANISM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Novel coronavirus disease (COVID-19), caused by the virus (SARS-CoV-2), has drastically impacted human beings' lives since early 2020. The virus is constantly changing, and with mutations, it becomes diverse and spreads more easily. Several automatic COVID-19 diag-nostic tools are proposed that emphasize feature extraction mechanism from radiographical images using modern deep learning technology. The general idea is to leverage smart solutions of pre-trained networks for deep-feature processing. However, all the extracted features may not essentially contribute to the performance of the COVID-19 diag-nostic model, and hence an optimal subset of features must be discov-ered. Motivated by this, we propose a novel feature selection method based on multi-operator differential evolution (MODE), which helps to acquire optimal feature-subset. To show the efficacy of the proposed algorithm, we focus on applying the COVID-19 classification model through medical imaging. Eight advanced pre-trained architectures have been selected for COVID-19 feature extraction from CT-scan medi-cal imaging. After that, the proposed feature selection technique based on MODE is applied. A customized SVM kernel is implemented that supports feature classification. The result analysis shows the perfor-mance of the existing COVID-19 designs with the proposed feature selection technique, MODE, integrated with a customized SVM kernel. It even beats the existing state-of-the-art frameworks carried forward for COVID-19 diagnosis. We have observed that MODE feature selec-tion is suitable for fast COVID-19 detection, having overall accuracy of 85.27%.
引用
收藏
页码:343 / 370
页数:28
相关论文
共 50 条
  • [1] Automatic Classification of COVID-19 using CT-Scan Images
    Reis, Hatice Catal
    ACTA SCIENTIARUM-TECHNOLOGY, 2021, 43
  • [2] A deep learning framework for accurate COVID-19 classification in CT-scan images
    Kordnoori, Shirin
    Sabeti, Maliheh
    Mostafaei, Hamidreza
    Banihashemi, Saeed Seyed Agha
    MACHINE LEARNING WITH APPLICATIONS, 2025, 19
  • [3] An efficient technique for CT scan images classification of COVID-19
    Elmuogy, Samir
    Hikal, Noha A.
    Hassan, Esraa
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (03) : 5225 - 5238
  • [4] Data Augmentation and CNN Classification For Automatic COVID-19 Diagnosis From CT-Scan Images On Small Dataset
    Tan, Weijun
    Guo, Hongwei
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 1455 - 1460
  • [5] Automatic Diagnosis of Covid-19 Related Pneumonia from CXR and CT-Scan Images
    Kumar, Naresh
    Hashmi, Adeel
    Gupta, Manish
    Kundu, Ankit
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2022, 12 (01) : 7993 - 7997
  • [6] Vision Transformer Based COVID-19 Detection Using Chest CT-scan images
    Sahoo, Pranab
    Saha, Sriparna
    Mondal, Samrat
    Gowda, Suraj
    2022 IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS (BHI) JOINTLY ORGANISED WITH THE IEEE-EMBS INTERNATIONAL CONFERENCE ON WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS (BSN'22), 2022,
  • [7] MiniCovid-Unet: CT-Scan Lung Images Segmentation for COVID-19 Identification
    Salazar-Urbina, Alvaro
    Ventura-Molina, Elias
    Yanez-Marquez, Cornelio
    Aldape-Perez, Mario
    Lopez-Yanez, Itzama
    COMPUTACION Y SISTEMAS, 2024, 28 (01): : 75 - 84
  • [8] Evaluation of chest CT-scan appearances of COVID-19 according to RSNA classification system
    Arian, Arvin
    Gity, Masoumeh
    Kolahi, Shahriar
    Khani, Sina
    Ahmadi, Mehran Arab
    Salehi, Mohammadreza
    Delazar, Sina
    JOURNAL OF FAMILY MEDICINE AND PRIMARY CARE, 2022, 11 (08) : 4410 - 4416
  • [9] Combined Cloud-Based Inference System for the Classification of COVID-19 in CT-Scan and X-Ray Images
    Dubey, Ankit Kumar
    Mohbey, Krishna Kumar
    NEW GENERATION COMPUTING, 2023, 41 (01) : 61 - 84
  • [10] Multifractal Analysis in Age-Based Classification for COVID-19 Patients' CT-Scan Images with Different Noise Levels
    Valarmathi, R.
    Thangaraj, C.
    Easwaramoorthy, D.
    Selmi, Bilel
    Jebali, Hajer
    Ananth, Christo
    FLUCTUATION AND NOISE LETTERS, 2024, 23 (05):