This paper is a contribution to the globalization problem for partial group actions on non-associative algebras. We principally focus on partial group actions on Lie algebras, Jordan algebras and Malcev algebras. We give sufficient conditions for the existence and uniqueness of a globalization for partial group actions on the algebras already mentioned. As an application of this result, we show that in characteristic zero every partial group action on a semisimple Malcev algebra admits a globalization, unique up to isomorphism. We give a criterion for the existence and uniqueness of a globalization for a partial group action on a unital Jordan algebra in characteristic different from two, and on a sympathetic Lie algebra (a perfect Lie algebra without center and outer derivations).
机构:
Univ Valladolid, Math Res Inst, IMUVA, Paseo Belen S N, E-47011 Valladolid, SpainUniv Valladolid, Math Res Inst, IMUVA, Paseo Belen S N, E-47011 Valladolid, Spain
Brox, J.
Garcia-Martinez, X.
论文数: 0引用数: 0
h-index: 0
机构:
CITMAga, Campus Ourense, E-32004 Orense, Spain
Univ Vigo, Dept Matemat, Esc Sup Enx Informat, Campus Ourense, E-32004 Orense, SpainUniv Valladolid, Math Res Inst, IMUVA, Paseo Belen S N, E-47011 Valladolid, Spain
Garcia-Martinez, X.
Mancini, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Palermo, Dipartimento Matemat & Informat, Via Archirafi 34, I-90123 Palermo, Italy
Catholic Univ Louvain, Inst Rech Math & Phys, Chemin Cyclotron 2 Bte L7-01-02, B-1348 Louvain La Neuve, BelgiumUniv Valladolid, Math Res Inst, IMUVA, Paseo Belen S N, E-47011 Valladolid, Spain
Mancini, M.
论文数: 引用数:
h-index:
机构:
van der Linden, T.
Vienne, C.
论文数: 0引用数: 0
h-index: 0
机构:
Catholic Univ Louvain, Inst Rech Math & Phys, Chemin Cyclotron 2 Bte L7-01-02, B-1348 Louvain La Neuve, BelgiumUniv Valladolid, Math Res Inst, IMUVA, Paseo Belen S N, E-47011 Valladolid, Spain