Spatial Structure of Lightning and Precipitation Associated with Lightning-Caused Wildfires in the Central to Eastern United States

被引:1
|
作者
Vant-Hull, Brian [1 ]
Koshak, William [2 ]
机构
[1] CUNY City Coll, New York, NY 10031 USA
[2] NASA, Marshall Space Flight Ctr, Huntsville, AL 35808 USA
来源
FIRE-SWITZERLAND | 2023年 / 6卷 / 07期
关键词
wildfire; lightning; ignition; dry lightning; WILDLAND FIRE; MODEL;
D O I
10.3390/fire6070262
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The horizontal storm structure surrounding 92,512 lightning-ignited wildfires is examined in the mid to eastern sections of the United States from 2003 to 2015 using Vaisala's National Lightning Detection Network (NLDN), NCEP's Stage IV gauge-corrected radar precipitation mosaic, and the US Forest Service's Fire Occurrence Database. Though lightning flash density peaks strongly around fire ignitions on the instantaneous 1 km scale, on the hourly 10 km scale, both the lightning and precipitation peaks are typically offset from fire ignitions. Lightning density is higher, and precipitation is lower around ignition points compared to non-ignition points. The average spatial distribution of total lightning flashes around fire ignitions is symmetrical, while that of precipitation and positive flashes is not. Though regression is consistent with the claim that positive flashes have a stronger association with ignition than negative flashes, the statistical significance is ambiguous and is contradicted by an unchanging positive flash fraction in the vicinity of wildfires.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Characteristics of lightning-caused wildfires in central Brazil in relation to cloud-ground and dry lightning
    Schumacher, Vanucia
    Setzer, Alberto
    Saba, Marcelo M. F.
    Naccarato, Kleber P.
    Mattos, Enrique
    Justino, Flavio
    AGRICULTURAL AND FOREST METEOROLOGY, 2022, 312
  • [2] Consequential lightning-caused wildfires and the "let burn" narrative
    Pietruszka, Bradley M.
    Young, Jesse D.
    Short, Karen C.
    St Denis, Lise A.
    Thompson, Matthew P.
    Calkin, David E.
    FIRE ECOLOGY, 2023, 19 (01)
  • [3] Probability distributions for holdover time of lightning-caused wildfires
    Moris, Jose V.
    Ascoli, Davide
    Hunt, Hugh G. P.
    2022 36TH INTERNATIONAL CONFERENCE ON LIGHTNING PROTECTION (ICLP 2022), 2022, : 496 - 499
  • [4] Consequential lightning-caused wildfires and the “let burn” narrative
    Bradley M. Pietruszka
    Jesse D. Young
    Karen C. Short
    Lise A. St. Denis
    Matthew P. Thompson
    David E. Calkin
    Fire Ecology, 19
  • [5] Using model-based geostatistics to predict lightning-caused wildfires
    Ordonez, C.
    Saavedra, A.
    Rodriguez-Perez, J. R.
    Castedo-Dorado, F.
    Covian, E.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2012, 29 (01) : 44 - 50
  • [6] Lightning-Ignited Wildfires in the Western United States: Ignition Precipitation and Associated Environmental Conditions
    Kalashnikov, Dmitri A.
    Abatzoglou, John T.
    Loikith, Paul C.
    Nauslar, Nicholas J.
    Bekris, Yianna
    Singh, Deepti
    GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (16)
  • [7] Modelling ignition probability for human- and lightning-caused wildfires in Victoria, Australia
    Dorph, Annalie
    Marshall, Erica
    Parkins, Kate A.
    Penman, Trent D.
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2022, 22 (10) : 3487 - 3499
  • [8] Contrasting the role of human- and lightning-caused wildfires on future fire regimes on a Central Oregon landscape
    Barros, Ana M. G.
    Day, Michelle A.
    Preisler, Haiganoush K.
    Abatzoglou, John T.
    Krawchuk, Meg A.
    Houtman, Rachel
    Ager, Alan A.
    ENVIRONMENTAL RESEARCH LETTERS, 2021, 16 (06)
  • [9] Insured lightning-caused property damage in three western states
    Holle, RL
    Lopez, RE
    Arnold, LJ
    Endres, J
    JOURNAL OF APPLIED METEOROLOGY, 1996, 35 (08): : 1344 - 1351