Logical big data integration and near real-time data analytics

被引:6
|
作者
Silva, Bruno [1 ]
Moreira, Jose [1 ,2 ]
Costa, Rogerio Luis de C. [3 ]
机构
[1] Univ Aveiro, Inst Elect & Informat Engn IEETA, LASI, P-3810193 Aveiro, Portugal
[2] Univ Aveiro, Dept Elect Telecommun & Informat DETI, P-3810193 Aveiro, Portugal
[3] Polytech Leiria, Comp Sci & Commun Res Ctr CIIC, P-2411901 Leiria, Portugal
关键词
Big data integration; Distributed databases; Near real-time OLAP;
D O I
10.1016/j.datak.2023.102185
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the context of decision-making, there is a growing demand for near real-time data that traditional solutions, like data warehousing based on long-running ETL processes, cannot fully meet. On the other hand, existing logical data integration solutions are challenging because users must focus on data location and distribution details rather than on data analytics and decision-making. EasyBDI is an open-source system that provides logical integration of data and high-level business-oriented abstractions. It uses schema matching, integration, and mapping techniques, to automatically identify partitioned data and propose a global schema. Users can then specify star schemas based on global entities and submit analytical queries to retrieve data from distributed data sources without knowing the organization and other technical details of the underlying systems. This work presents the algorithms and methods for global schema creation and query execution. Experimental results show that the overhead imposed by logical integration layers is relatively small compared to the execution times of distributed queries.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] A Big Data Architecture for Near Real-time Traffic Analytics
    Gong, Yikai
    Rimba, Paul
    Sinnott, Richard O.
    COMPANION PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON UTILITY AND CLOUD COMPUTING (UCC'17 COMPANION), 2017, : 157 - 162
  • [2] Real-Time Big Data Analytics: Applications and Challenges
    Mohamed, Nader
    Al-Jaroodi, Jameela
    2014 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS), 2014, : 305 - 310
  • [3] A Methodology of Real-Time Data Fusion for Localized Big Data Analytics
    Jabbar, Sohail
    Malik, Kaleem R.
    Ahmad, Mudassar
    Aldabbas, Omar
    Asif, Muhammad
    Khalid, Shehzad
    Han, Kijun
    Ahmed, Syed Hassan
    IEEE ACCESS, 2018, 6 : 24510 - 24520
  • [4] Near real-time big data analytics for NFC-enabled logistics trajectories
    Karim, Lamia
    Boulmakoul, Azedine
    Lbath, Ahmed
    PROCEEDINGS OF THE 3RD IEEE INTERNATIONAL CONFERENCE ON LOGISTICS OPERATIONS MANAGEMENT (GOL'16), 2016,
  • [5] Big Data Stream Computing in Healthcare Real-Time Analytics
    Ta, Van-Dai
    Liu, Chuan-Ming
    Nkabinde, Goodwill Wandile
    PROCEEDINGS OF 2016 IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA 2016), 2016, : 37 - 42
  • [6] A Survey on Real-time Big Data Analytics: Applications and Tools
    Yadranjiaghdam, Babak
    Pool, Nathan
    Tabrizi, Nasseh
    2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE & COMPUTATIONAL INTELLIGENCE (CSCI), 2016, : 404 - 409
  • [7] An incremental approach for real-time Big Data visual analytics
    Garcia, Ignacio
    Casado, Ruben
    Bouchachia, Abdelhamid
    2016 IEEE 4TH INTERNATIONAL CONFERENCE ON FUTURE INTERNET OF THINGS AND CLOUD WORKSHOPS (FICLOUDW), 2016, : 177 - 182
  • [8] Real-time Big Data Analytics for Multimedia Transmission and Storage
    Wang, Kun
    Mi, Jun
    Xu, Chenhan
    Shu, Lei
    Deng, Der-Jiunn
    2016 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2016,
  • [9] Big Data Streaming Platforms to Support Real-time Analytics
    Fernandes, Eliana
    Salgado, Ana Carolina
    Bernardino, Jorge
    ICSOFT: PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON SOFTWARE TECHNOLOGIES, 2020, : 426 - 433
  • [10] Big Data Analytics Architecture for Real-Time Traffic Control
    Amini, Sasan
    Gerostathopoulos, Ilias
    Prehofer, Christian
    2017 5TH IEEE INTERNATIONAL CONFERENCE ON MODELS AND TECHNOLOGIES FOR INTELLIGENT TRANSPORTATION SYSTEMS (MT-ITS), 2017, : 710 - 715