MATHEMATICAL MODELING OF NEUTRON RADIOGRAPHY PROCESSES

被引:0
|
作者
Prokhorets, S. I. [1 ]
Khazhmuradov, M. A. [1 ]
机构
[1] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkiv, Ukraine
关键词
D O I
10.46813/2023-145-076
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A goal function is formulated and parameters for neutron radiography setup optimization are determined. The results of calculation of neutron passing through formation system are given.
引用
收藏
页码:76 / 78
页数:3
相关论文
共 50 条
  • [1] PHYSICAL PROCESSES AND MATHEMATICAL-METHODS IN NEUTRON RADIOGRAPHY
    HARMS, AA
    ATOMIC ENERGY REVIEW, 1977, 15 (02) : 143 - 168
  • [2] NEUTRON RADIOGRAPHY OF FAST TRANSIENT PROCESSES
    OKAWARA, GS
    HARMS, AA
    NUCLEAR TECHNOLOGY, 1976, 31 (02) : 250 - 256
  • [3] Neutron radiography visualization of internal processes in refrigerators
    Atomic Energy Research Inst, Budapest, Hungary
    Phys B Condens Matter, (1033-1034):
  • [4] Neutron radiography visualization of internal processes in refrigerators
    Balasko, M
    Svab, E
    Vida, A
    Szikra, I
    PHYSICA B, 1997, 234 : 1033 - 1034
  • [5] Mathematical modeling of demographic processes
    Dmitriev V.I.
    Kurkina E.S.
    Computational Mathematics and Modeling, 2009, 20 (1) : 51 - 64
  • [6] Mathematical modeling of microcirculatory processes
    Shvab, Irina V.
    Nimaev, Vadim V.
    2017 INTERNATIONAL MULTI-CONFERENCE ON ENGINEERING, COMPUTER AND INFORMATION SCIENCES (SIBIRCON), 2017, : 531 - 533
  • [7] Mathematical modeling for developmental processes
    Iwasa, Yoh
    DEVELOPMENT GROWTH & DIFFERENTIATION, 2023, 65 (05) : 272 - 281
  • [8] Mathematical Modeling of Regenerative Processes
    Chara, Osvaldo
    Tanaka, Elly M.
    Brusch, Lutz
    MECHANISM OF REGENERATION, 2014, 108 : 283 - 317
  • [9] Mathematical modeling of cyclic processes
    Sokovnin, O. M.
    Zagoskina, N. V.
    Zagoskin, S. N.
    THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING, 2010, 44 (04) : 389 - 398
  • [10] Mathematical Modeling of Biological Processes
    Barbarossa, Maria Vittoria
    ACTA SCIENTIARUM MATHEMATICARUM, 2015, 81 (3-4): : 719 - 719