Symbol-pair distance of some repeated-root constacyclic codes of length ps over the Galois ring GR(pa, m)

被引:0
|
作者
Dinh, Hai Q. [1 ]
Kewat, Pramod Kumar [2 ]
Mondal, Nilay Kumar [2 ]
机构
[1] Kent State Univ, Dept Math Sci, Warren, OH 44483 USA
[2] Indian Inst Technol ISM, Dept Math & Comp, Dhanbad 826004, Bihar, India
关键词
Symbol-pair distance; MDS codes; Constacyclic codes; Repeated-root codes; Codes over finite rings;
D O I
10.1007/s00200-022-00544-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Let a and m be positive integers and lambda be any unit in GR(p(a), m) of the form lambda = (sigma(0) + p sigma(1) + p(2)z), where sigma(0), sigma(1) is an element of T(p, m) \ {0} and z is an element of GR(p(a), m). The symbol-pair distance of all such lambda-constacyclic codes over GR(p(a), m) of length ps are determined. As an application, we identify all maximum distance separable (MDS) lambda-constacyclic codes of length p(s) over GR(p(a), m) with respect to the symbol-pair distance. We give numerous examples of newly constructed MDS symbol-pair codes, i.e., new optimal symbol-pair codes with respect to the Singleton bound.
引用
收藏
页码:195 / 205
页数:11
相关论文
共 50 条
  • [1] On the symbol-pair distance of some classes of repeated-root constacyclic codes over Galois ring
    Dinh, Hai Q.
    Kumar, Narendra
    Singh, Abhay Kumar
    Singh, Manoj Kumar
    Gupta, Indivar
    Maneejuk, Paravee
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2023, 34 (01) : 111 - 128
  • [2] On the symbol-pair distance of some classes of repeated-root constacyclic codes over Galois ring
    Hai Q. Dinh
    Narendra Kumar
    Abhay Kumar Singh
    Manoj Kumar Singh
    Indivar Gupta
    Paravee Maneejuk
    Applicable Algebra in Engineering, Communication and Computing, 2023, 34 : 111 - 128
  • [3] ON SYMBOL-PAIR DISTANCE DISTRIBUTIONS OF REPEATED-ROOT CONSTACYCLIC CODES OF LENGTH 4ps AND MDS CODES
    Dinh, Hai q.
    Singh, Abhay kumar
    Thakur, Madhu kant
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2025,
  • [4] On the symbol-pair distances of repeated-root constacyclic codes of length 2ps
    Dinh, Hai Q.
    Wang, Xiaoqiang
    Liu, Hongwei
    Sriboonchitta, Songsak
    DISCRETE MATHEMATICS, 2019, 342 (11) : 3062 - 3078
  • [5] On symbol-pair distances of repeated-root constacyclic codes of length 2ps over Fpm + uFpm and MDS symbol-pair codes
    Dinh, Hai Q.
    Singh, Abhay Kumar
    Thakur, Madhu Kant
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2023, 34 (06) : 1027 - 1043
  • [6] On the Symbol-Pair Distance of Repeated-Root Constacyclic Codes of Prime Power Lengths
    Dinh, Hai Q.
    Bac Trong Nguyen
    Singh, Abhay Kumar
    Sriboonchitta, Songsak
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (04) : 2417 - 2430
  • [7] Repeated-root constacyclic codes of arbitrary lengths over the Galois ring GR(p(2),m)
    Sharma, Anuradha
    Sidana, Tania
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (03)
  • [8] REPEATED-ROOT CONSTACYCLIC CODES OF LENGTH 2ps OVER GALOIS RINGS
    Klin-Eam, Chakkrid
    Sriwirach, Wateekorn
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (01) : 131 - 150
  • [9] Symbol-Pair Distances of Repeated-Root Negacyclic Codes of Length 2s over Galois Rings
    Dinh, Hai Q.
    Liu, Hualu
    Tansuchat, Roengchai
    Vo, Thang M.
    ALGEBRA COLLOQUIUM, 2021, 28 (04) : 581 - 600
  • [10] Some Repeated-Root Constacyclic Codes Over Galois Rings
    Liu, Hongwei
    Maouche, Youcef
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (10) : 6247 - 6255