May the privacy be with us: Correlated differential privacy in location data for ITS

被引:3
|
作者
Chong, Kah Meng [1 ]
Malip, Amizah [1 ,2 ]
机构
[1] Univ Malaya, Fac Sci, Inst Math Sci, Kuala Lumpur 50603, Malaysia
[2] Univ Malaya, Inst Math Sci, Kuala Lumpur, Malaysia
关键词
Differential privacy; Data correlation; Privacy leakage; Location data; ITS; K-ANONYMITY; PRESERVATION; INTERNET;
D O I
10.1016/j.comnet.2024.110214
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the development of Intelligent Transportation Systems (ITS), a vast amount of location data is being generated from various IoT devices equipped with location positioning sensors. Preserving the privacy of location data release is a critical concern, as the publication of aggregated data often reveals private information about the users. Differential Privacy (DP) has recently emerged as a robust framework to guarantee privacy in this context. However, conventional DP mechanisms commonly make no assumption about the distribution of the input data, which could lead to unexpected privacy leakage if the data are correlated. In this paper, we investigate the complex simultaneous impact of user correlation, spatial-temporal correlation and prior knowledge of an adversary on the privacy leakage of a DP mechanism, which has not been addressed in prior work. We derive several closed -form expressions that demonstrate and quantify the privacy leakage under correlated location data, followed by the design of efficient algorithms to compute such privacy leakage. Then, we propose a Delta-CDP (Correlated Differential Privacy) to provide a formal privacy guarantee against the additional privacy leakage incurred by these factors. Extensive comparisons, theoretical analysis, and experimental simulations are presented to validate the correctness and efficiency of the proposed work.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Local Differential Privacy for correlated location data release in ITS
    Chong, Kah Meng
    Malip, Amizah
    COMPUTER NETWORKS, 2024, 255
  • [2] Dependent Differential Privacy for Correlated Data
    Zhao, Jun
    Zhang, Junshan
    Poor, H. Vincent
    2017 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2017,
  • [3] Bayesian Differential Privacy on Correlated Data
    Yang, Bin
    Sato, Issei
    Nakagawa, Hiroshi
    SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 747 - 762
  • [4] Privacy preserving in location data release: A differential privacy approach
    Xiong, Ping
    Zhu, Tianqing
    Pan, Lei
    Niu, Wenjia
    Li, Gang
    Li, Gang, 1600, Springer Verlag (8862): : 183 - 195
  • [5] Privacy Preserving in Location Data Release: A Differential Privacy Approach
    Xiong, Ping
    Zhu, Tianqing
    Pan, Lei
    Niu, Wenjia
    Li, Gang
    PRICAI 2014: TRENDS IN ARTIFICIAL INTELLIGENCE, 2014, 8862 : 183 - 195
  • [6] Correlated data in differential privacy: Definition and analysis
    Zhang, Tao
    Zhu, Tianqing
    Liu, Renping
    Zhou, Wanlei
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (16):
  • [7] Correlated differential privacy protection for big data
    Lv, Denglong
    Zhu, Shibing
    PROCEEDINGS 2018 IEEE 32ND INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS (AINA), 2018, : 1011 - 1018
  • [8] Location Data Record Privacy Protection Based on Differential Privacy Mechanism
    Gu, Ke
    Yang, Lihao
    Yin, Bo
    INFORMATION TECHNOLOGY AND CONTROL, 2018, 47 (04): : 639 - 654
  • [9] Enhancing correlated big data privacy using differential privacy and machine learning
    Biswas, Sreemoyee
    Fole, Anuja
    Khare, Nilay
    Agrawal, Pragati
    JOURNAL OF BIG DATA, 2023, 10 (01)
  • [10] Enhancing correlated big data privacy using differential privacy and machine learning
    Sreemoyee Biswas
    Anuja Fole
    Nilay Khare
    Pragati Agrawal
    Journal of Big Data, 10