AUTOMATIC SIMULATION OF SAR IMAGES: COMPARING A DEEP-LEARNING BASED METHOD TO A HYBRID METHOD

被引:0
|
作者
Letheule, Nathan [1 ,2 ]
Weissgerber, Flora [1 ]
Lobry, Sylvain [2 ]
Colin, Elise [1 ]
机构
[1] Univ Paris Saclay, ONERA, DTIS Lab, Gif Sur Yvette, France
[2] Univ Paris, LIPADE, Paris, France
关键词
Simulation; Radar; Deep Learning; Remote sensing; Semantic segmentation;
D O I
10.1109/IGARSS52108.2023.10282024
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This study compares two approaches for simulating synthetic aperture radar (SAR) images. The first approach uses a conditional Generative Adversarial Network (cGAN) to learn statistical image distributions from optical images. In a second approach, we generate SAR images using a electromagnetic simulator taking into input material maps obtained by segmenting optical images. We propose two metrics to evaluate the quality of the simulation. We evaluate the methods on existing Sentinel-1 SAR images of France using the DREAM database. The results suggest that the physical simulator with automatically created material maps is better suited for generating realistic SAR images compared to the cGAN approach, even if a lot of work remains to be done on the complexity of the description of the scene.
引用
收藏
页码:4958 / 4961
页数:4
相关论文
共 50 条
  • [1] A Deep-learning based Method for the Classification of the Cellular Images
    Vununu, Caleb
    Lee, Suk-Hwan
    Kwon, Ki-Ryong
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 3: BIOINFORMATICS, 2020, : 242 - 245
  • [2] Automatic Meningioma Segmentation and Grading Prediction: A Hybrid Deep-Learning Method
    Chen, Chaoyue
    Cheng, Yisong
    Xu, Jianfeng
    Zhang, Ting
    Shu, Xin
    Huang, Wei
    Hua, Yu
    Zhang, Yang
    Teng, Yuen
    Zhang, Lei
    Xu, Jianguo
    JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (08):
  • [3] Automatic Classification Method for Oracle Images based on Deep Learning
    Qiao Y.
    Xing L.
    IEIE Transactions on Smart Processing and Computing, 2023, 12 (02): : 87 - 96
  • [4] Cervical cell deep-learning automatic classification method based on fusion features
    Hao, Xueli
    Pei, Lili
    Li, Wei
    Hou, Qing
    Sun, Zhaoyun
    Sun, Xingxing
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (21) : 33183 - 33202
  • [5] Cervical cell deep-learning automatic classification method based on fusion features
    Xueli Hao
    Lili Pei
    Wei Li
    Qing Hou
    Zhaoyun Sun
    Xingxing Sun
    Multimedia Tools and Applications, 2023, 82 : 33183 - 33202
  • [6] Automatic Cephalometric Landmark Detection on X-ray Images Using a Deep-Learning Method
    Song, Yu
    Qiao, Xu
    Iwamoto, Yutaro
    Chen, Yen-wei
    APPLIED SCIENCES-BASEL, 2020, 10 (07):
  • [7] Method for the automatic recognition of cropland headland images based on deep learning
    Qiao, Yujie
    Liu, Hui
    Meng, Zhijun
    Chen, Jingping
    Ma, Luyao
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING, 2023, 16 (02) : 216 - 224
  • [8] AN INTEGRATED METHOD OF SHIP DETECTION AND RECOGNITION IN SAR IMAGES BASED ON DEEP LEARNING
    Hou, Zesheng
    Cui, Zongyong
    Cao, Zongjie
    Liu, Nengyuan
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1225 - 1228
  • [9] Multilayer Hybrid Deep-Learning Method for Waste Classification and Recycling
    Chu, Yinghao
    Huang, Chen
    Xie, Xiaodan
    Tan, Bohai
    Kamal, Shyam
    Xiong, Xiaogang
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2018, 2018
  • [10] Deep-learning based method for breech face comparisons
    Zhu, Jialing
    Hong, Rongjing
    Robin, Ashraf Uz Zaman
    Zhang, Hao
    PROCEEDINGS OF 2022 THE 6TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND SOFT COMPUTING, ICMLSC 20222, 2022, : 15 - 19