Non-connected Lie groups, twisted equivariant bundles and coverings

被引:1
|
作者
Barajas, G. [1 ]
Garcia-Prada, O. [1 ]
Gothen, P. B. [2 ,3 ]
Riera, I. Mundet i [4 ]
机构
[1] UAM, Inst Ciencias Matemat ICMAT, 13-15 Campus Cantoblanco, Madrid 28049, Spain
[2] Univ Porto, Ctr Matemat, Fac Ciencias, Rua Campo Alegre, P-4169007 Porto, Portugal
[3] Univ Porto, Fac Ciencias, Dept Matemat, Rua Campo Alegre, P-4169007 Porto, Portugal
[4] Univ Barcelona, Dept Matemat & Informat, Gran Via Les Corts Catalanes 585, Barcelona 08007, Spain
关键词
Non-connected Lie group; Principal bundle; Twisted equivariant bundle; Covering; Non-abelian cohomology; MODULI; INVOLUTIONS;
D O I
10.1007/s10711-022-00764-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let gamma be a finite group acting on a Lie group G. We consider a class of group extensions 1 -> G -> G -> gamma -> 1 defined by this action and a 2-cocycle of gamma with values in the centre of G. We establish and study a correspondence between G-bundles on a manifold and twisted gamma-equivariant bundles with structure group G on a suitable Galois gamma-covering of the manifold. We also describe this correspondence in terms of non-abelian cohomology. Our results apply, in particular, to the case of a compact or reductive complex Lie group G, since such a group is always isomorphic to an extension as above, where G is the connected component of the identity and gamma is the group of connected components of G.
引用
收藏
页数:41
相关论文
共 50 条