Noncommutative scalar field theory in a curved background: Duality between noncommutative and effective commutative description

被引:0
|
作者
Ciric, Marija Dimitrijevic [1 ]
Konjik, Nikola [1 ]
Samsarov, Andjelo [2 ]
机构
[1] Univ Belgrade, Fac Phys, Studentski trg 12, Belgrade 11000, Serbia
[2] Rudjer Boskovic Inst, Bijenicka c 54, HR-10002 Zagreb, Croatia
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2023年 / 38卷 / 32期
关键词
Noncommutative geometry; scalar field; effective background; SPACETIME;
D O I
10.1142/S0217751X23430042
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We study a noncommutative (NC) deformation of a charged scalar field, minimally coupled to a classical (commutative) Reissner-Nordstrom-like background. The deformation is performed via a particularly chosen Killing twist to ensure that the geometry remains undeformed (commutative). An action describing a NC scalar field minimally coupled to the RN geometry is manifestly invariant under the deformed U(1)(*) gauge symmetry. We find the equation of motion and conclude that the same equation is obtained from the commutative theory in a modified geometrical background described by an effective metric. This correspondence we call ''duality between formal and effective approach". We also show that a NC deformation via semiKilling twist operator cannot be rewritten in terms of an effective metric. There is dual description for those particular deformations.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Duality in scalar field theory on noncommutative phase spaces
    Langmann, E
    Szabo, RJ
    PHYSICS LETTERS B, 2002, 533 (1-2) : 168 - 177
  • [2] Noncommutative effective theory of vortices in a complex scalar field
    Fosco, CD
    López, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (10): : 2599 - 2607
  • [3] Field Theory on Curved Noncommutative Spacetimes
    Schenkel, Alexander
    Uhlemann, Christoph F.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6
  • [4] Symmetries of noncommutative scalar field theory
    de Goursac, Axel
    Wallet, Jean-Christophe
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (05)
  • [5] Two-loop effective potential in noncommutative scalar field theory
    Huang, WH
    PHYSICS LETTERS B, 2000, 496 (3-4) : 206 - 211
  • [6] Wilsonian renormalization of noncommutative scalar field theory
    Gurau, Razvan
    Rosten, Oliver J.
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (07):
  • [7] FUNCTIONAL RENORMALIZATION OF NONCOMMUTATIVE SCALAR FIELD THEORY
    Sfondrini, Alessandro
    Koslowski, Tim A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2011, 26 (23): : 4009 - 4051
  • [8] Scalar field theory on noncommutative Snyder spacetime
    Battisti, Marco Valerio
    Meljanac, Stjepan
    PHYSICAL REVIEW D, 2010, 82 (02):
  • [9] Aspects of a noncommutative scalar/tensor duality
    Ajith, K. M.
    Harikumar, E.
    Rivelles, Victor O.
    Sivakumar, M.
    PHYSICAL REVIEW D, 2008, 77 (08):
  • [10] Euclidean quantum field theory on commutative and noncommutative spaces
    Wulkenhaar, R
    GEOMETRIC AND TOPOLOGICAL METHODS FOR QUANTUM FIELD THEORY, 2005, 668 : 59 - 100