The existence, uniqueness, and stability analyses of the generalized Caputo-type fractional boundary value problems

被引:12
|
作者
Poovarasan, R. [1 ]
Kumar, Pushpendra [2 ]
Nisar, Kottakkaran Sooppy [3 ,4 ]
Govindaraj, V. [1 ]
机构
[1] Natl Inst Technol Puducherry, Dept Math, Karaikal 609609, India
[2] Univ Johannesburg, Inst Future Knowledge, POB 524, ZA-2006 Auckland Pk, South Africa
[3] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Alkharj, Dept Math, Alkharj 11942, Saudi Arabia
[4] Woxsen Univ Hyderabad, Sch Technol, Hyderabad 502345, Telangana, India
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 07期
关键词
generalized Caputo derivative; fractional boundary value problem; existence; uniqueness; Ulam-Hyers stability; INITIAL-VALUE PROBLEMS;
D O I
10.3934/math.2023857
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we derive some novel results of the existence, uniqueness, and stability of the solution of generalized Caputo-type fractional boundary value problems (FBVPs). The Banach contraction principle, along with necessary features of fixed point theory, is used to establish our results. An example is illustrated to justify the validity of the theoretical observations.
引用
收藏
页码:16757 / 16772
页数:16
相关论文
共 50 条
  • [1] EXISTENCE AND UNIQUENESS RESULTS OF BOUNDARY VALUE PROBLEMS FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS INVOLVING Ψ-CAPUTO-TYPE FRACTIONAL DERIVATIVES
    El Mfadel, A.
    Melliani, S.
    Elomari, M.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2023, 92 (01): : 23 - 33
  • [2] Some novel mathematical results on the existence and uniqueness of generalized Caputo-type initial value problems with delay
    Kumar, Pushpendra
    Govindaraj, V
    Khan, Zareen A.
    AIMS MATHEMATICS, 2022, 7 (06): : 10483 - 10494
  • [3] Some novel analyses of the Caputo-type singular three-point fractional boundary value problems
    Poovarasan, R.
    Kumar, Pushpendra
    Sivalingam, S. M.
    Govindaraj, V.
    JOURNAL OF ANALYSIS, 2024, 32 (02): : 637 - 658
  • [4] EXISTENCE AND UNIQUENESS OF GLOBAL SOLUTIONS OF CAPUTO-TYPE FRACTIONAL DIFFERENTIAL EQUATIONS
    Sin, Chung-Sik
    Zheng, Liancun
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (03) : 765 - 774
  • [5] Some novel analyses of the Caputo-type singular three-point fractional boundary value problems
    R. Poovarasan
    Pushpendra Kumar
    S. M. Sivalingam
    V. Govindaraj
    The Journal of Analysis, 2024, 32 : 637 - 658
  • [6] Numerical simulation of initial value problems with generalized Caputo-type fractional derivatives
    Odibat, Zaid
    Baleanu, Dumitru
    APPLIED NUMERICAL MATHEMATICS, 2020, 156 (94-105) : 94 - 105
  • [7] Existence and uniqueness of global solutions of caputo-type fractional differential equations
    Chung-Sik Sin
    Liancun Zheng
    Fractional Calculus and Applied Analysis, 2016, 19 : 765 - 774
  • [8] Existence and uniqueness of solutions to Riesz-Caputo impulsive fractional boundary value problems
    Toprakseven, Suayip
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2021, 24 (08) : 2071 - 2086
  • [9] Extremal Solutions of Generalized Caputo-Type Fractional-Order Boundary Value Problems Using Monotone Iterative Method
    Derbazi, Choukri
    Baitiche, Zidane
    Abdo, Mohammed S.
    Shah, Kamal
    Abdalla, Bahaaeldin
    Abdeljawad, Thabet
    FRACTAL AND FRACTIONAL, 2022, 6 (03)
  • [10] Existence and Stability Results for Caputo-Type Sequential Fractional Differential Equations with New Kind of Boundary Conditions
    Awadalla, Muath
    Manigandan, Murugesan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022