Standardizing analysis of intra-tumoral heterogeneity with computational pathology

被引:1
|
作者
Paliwal, Ameesha [1 ]
Faust, Kevin [2 ,3 ]
Alshoumer, Azhar [1 ]
Diamandis, Phedias [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Univ Toronto, Dept Lab Med & Pathobiol, Toronto, ON, Canada
[2] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[3] Princess Margaret Canc Ctr, Dept Lab Med & Pathol, Toronto, ON, Canada
[4] Univ Hlth Network, Dept Pathol, Lab Med Program, Toronto, ON, Canada
[5] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
[6] Univ Hlth Network, Dept Pathol, 12-308,Toronto Med Discovery Tower TMDT,101 Coll S, Toronto, ON M5G 1L7, Canada
来源
GENES CHROMOSOMES & CANCER | 2023年 / 62卷 / 09期
基金
加拿大健康研究院;
关键词
artificial intelligence; computer vision; deep learning; molecular profiling; tumor heterogeneity; GENOMIC ANALYSIS; GLIOBLASTOMA; GLIOMA; EVOLUTION; THERAPY; TEMOZOLOMIDE; CHALLENGES; SURVIVAL; FEATURES; SUBTYPES;
D O I
10.1002/gcc.23146
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Many malignant cancers like glioblastoma are highly adaptive diseases that dynamically change their regional biology to survive and thrive under diverse microenvironmental and therapeutic pressures. While the concept of intra-tumoral heterogeneity has become a major paradigm in cancer research and care, systematic approaches to assess and document bio-variation in cancer are still in their infancy. Here we discuss existing approaches and challenges to documenting intra-tumoral heterogeneity and emerging computational approaches that leverage artificial intelligence to begin to overcome these limitations. We propose how these emerging techniques can be coupled with a diversity of molecular tools to address intra-tumoral heterogeneity more systematically in research and in practice, especially across larger specimens and longitudinal analyses. Systematic documentation and characterization of heterogeneity across entire tumor specimens and their longitudinal evolution has the potential to improve our understanding and treatment of cancer.
引用
收藏
页码:526 / 539
页数:14
相关论文
共 50 条
  • [1] epihet for intra-tumoral epigenetic heterogeneity analysis and visualization
    Chen, Xiaowen
    Ashoor, Haitham
    Musich, Ryan
    Wang, Jiahui
    Zhang, Mingsheng
    Zhang, Chao
    Lu, Mingyang
    Li, Sheng
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [2] epihet for intra-tumoral epigenetic heterogeneity analysis and visualization
    Xiaowen Chen
    Haitham Ashoor
    Ryan Musich
    Jiahui Wang
    Mingsheng Zhang
    Chao Zhang
    Mingyang Lu
    Sheng Li
    Scientific Reports, 11
  • [3] Addressing intra-tumoral heterogeneity and therapy resistance
    Rybinski, Brad
    Yun, Kyuson
    ONCOTARGET, 2016, 7 (44) : 72322 - 72342
  • [4] Intrinsic radioresistance and intra-tumoral heterogeneity in HNSCC
    Mutlu, S.
    Unger, K.
    Brix, N.
    Heider, T.
    Maier, S.
    Branz, P.
    Hess, J.
    Belka, C.
    Zitzelsberger, H.
    Lauber, K.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2020, 196 (SUPPL 1) : S189 - S190
  • [5] The analysis of cytogenetic intra-tumoral heterogeneity in squamous cell carcinoma of the breast
    Oikawa, M.
    Igawa, A.
    Ishida, M.
    Nakamura, Y.
    Nishimura, S.
    Koga, C.
    Akiyoshi, S.
    Koi, Y.
    Taguchi, K.
    Ohno, S.
    BREAST, 2015, 24 : S35 - S35
  • [6] INVESTIGATING INTRA-TUMORAL HETEROGENEITY OF EXTRACHROMOSOMAL DNA IN SHH MEDULLOBLASTOMA
    Chapman, Owen
    Sridhar, Sunita
    Wechsler-Reya, Robert J.
    Chavez, Lukas
    Mesirov, Jill P.
    NEURO-ONCOLOGY, 2022, 24 : 121 - 122
  • [7] Inter and intra-tumoral heterogeneity as a platform for personalized therapies in medulloblastoma
    Danilenko, Marina
    Clifford, Steven C.
    Schwalbe, Edward C.
    PHARMACOLOGY & THERAPEUTICS, 2021, 228
  • [8] The intra-tumoral heterogeneity in glioblastoma — a limitation for prognostic value of epigenetic markers?
    Sippl Christoph
    Saenz Alicia
    Teping Fritz
    Trenkpohl Vanessa
    Ketter Ralf
    Kim Yoo Jin
    Linsler Stefan
    Oertel Joachim
    Acta Neurochirurgica, 2023, 165 : 1635 - 1644
  • [9] INTRA-TUMORAL HETEROGENEITY OF DNA METHYLATION PROFILING AND CELLULAR COMPOSITION IN GLIOBLASTOMA
    Matsumoto, Yuji
    Singh, Omkar
    Garcia, Jose
    Kwak, Sunwoo
    Abdullaev, Zied
    Freeburg, Nelson
    Silverbush, Dana
    Aldape, Kenneth
    Davatzikos, Christos
    Nasrallah, Maclean
    NEURO-ONCOLOGY, 2024, 26
  • [10] The intra-tumoral heterogeneity in glioblastoma - a limitation for prognostic value of epigenetic markers?
    Christoph, Sippl
    Alicia, Saenz
    Fritz, Teping
    Vanessa, Trenkpohl
    Ralf, Ketter
    Jin, Kim Yoo
    Stefan, Linsler
    Joachim, Oertel
    ACTA NEUROCHIRURGICA, 2023, 165 (06) : 1635 - 1644