Optimum substrate stiffness in coalescence-induced droplet jumping

被引:2
|
作者
Qiu, Lianfu [1 ]
Qian, Sheng [1 ]
Ni, Yifeng [1 ,2 ]
Tong, Qi [1 ]
机构
[1] Fudan Univ, Dept Aeronaut & Astronaut, Shanghai 200433, Peoples R China
[2] Shanghai Minghua Elect Power Sci & Technol Co Ltd, Shanghai 200090, Peoples R China
关键词
SUPERHYDROPHOBIC SURFACES; DROPWISE CONDENSATION; NANODROPLETS;
D O I
10.1039/d3cp00835e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
When droplets are brought into contact and coalesced on a superhydrophobic surface, the kinetic energy converted from the surface energy enables the merged droplet to jump. Current studies mainly focus on the microstructure of surfaces and the properties of droplets that influence the jumping dynamics. Here, by means of molecular dynamics, we investigate the coalescence-induced jumping of nanodroplets on soft substrates. The optimum stiffness of the substrate is suggested and the mechanism involved is demonstrated through the analysis of the interactions between the droplets and the substrates. The momentum of the droplet is evaluated by integrating the forces from the substrate. The optimum stiffness for jumping velocity is provided by the competition between the impact and the adhesion from the substrate during the process, which are both closely related to the stiffness. The results may inspire fundamental research and applications in a broad scope.
引用
收藏
页码:14368 / 14373
页数:6
相关论文
共 50 条
  • [1] Coalescence-Induced Droplet Jumping
    Liu, Chuntian
    Zhao, Meirong
    Zheng, Yelong
    Cheng, Luya
    Zhang, Jiale
    Tee, Clarence Augustine T. H.
    LANGMUIR, 2021, 37 (03) : 983 - 1000
  • [2] Asymmetric coalescence-induced droplet jumping on hydrophobic fibers
    Li, Bingbing
    Xin, Feng
    Zhu, Guorui
    Tan, Wei
    CHEMICAL ENGINEERING SCIENCE, 2019, 201 : 298 - 308
  • [3] Coalescence-induced jumping of droplet: Inertia and viscosity effects
    Farokhirad, Samaneh
    Morris, Jeffrey F.
    Lee, Taehun
    PHYSICS OF FLUIDS, 2015, 27 (10)
  • [4] Coalescence-induced droplet jumping on superhydrophobic surfaces: Effects of droplet mismatch
    Wasserfall, Joram
    Figueiredo, Patric
    Kneer, Reinhold
    Rohlfs, Wilko
    Pischke, Philipp
    PHYSICAL REVIEW FLUIDS, 2017, 2 (12):
  • [5] Nanograssed Zigzag Structures To Promote Coalescence-Induced Droplet Jumping
    Han, Taeyang
    Kwak, Ho Jae
    Kim, Jong Hyun
    Kwon, Jeong-Tae
    Kim, Moo Hwan
    LANGMUIR, 2019, 35 (27) : 9093 - 9099
  • [6] Directional Droplet Coalescence-Induced Jumping Regulated by Laplace Pressure
    Zhang, Zijin
    Wang, Jin
    He, Yongqing
    Jiao, Feng
    LANGMUIR, 2025, 41 (13) : 8921 - 8933
  • [7] Coalescence-Induced Droplet Jumping for Electro-Thermal Sensing
    Chettiar, Kaushik
    Ghaddar, Dalia
    Birbarah, Patrick
    Li, Zhaoer
    Kim, Moonkyung
    Miljkovic, Nenad
    LANGMUIR, 2023, 39 (51) : 18909 - 18922
  • [8] Coalescence-Induced Droplet Jumping on Honeycomb Bionic Superhydrophobic Surfaces
    Gao, Yan
    Ke, Zhaoqing
    Yang, Wei
    Wang, Zhiqiang
    Zhang, Ying
    Wu, Wei
    LANGMUIR, 2022, 38 (32) : 9981 - 9991
  • [9] Coalescence-induced nanodroplet jumping
    Cha, Hyeongyun
    Xu, Chenyu
    Sotelo, Jesus
    Chun, Jae Min
    Yokoyama, Yukihiro
    Enright, Ryan
    Miljkovic, Nenad
    PHYSICAL REVIEW FLUIDS, 2016, 1 (06):
  • [10] A lattice Boltzmann simulation of coalescence-induced droplet jumping on superhydrophobic surfaces
    Ling, Fengru
    Huang, Gang
    Tang, Hao
    Geng, Mengmeng
    Ye, Yutong
    Qin, Zhangrong
    3RD INTERNATIONAL CONFERENCE ON FLUID MECHANICS AND INDUSTRIAL APPLICATIONS, 2019, 1300