Three-Dimensional Simulation on the Effects of Different Parameters and Pt Loading on the Long-Term Performance of Proton Exchange Membrane Fuel Cells

被引:0
|
作者
Huang, Zheng [1 ]
Su, Laisuo [2 ,3 ]
Yang, Yunjie [1 ]
Gao, Linsong [1 ]
Liu, Xinyu [1 ]
Huang, Heng [1 ]
Li, Yubai [1 ]
Song, Yongchen [1 ]
机构
[1] Dalian Univ Technol, Key Lab Ocean Energy Utilizat & Energy Conservat, Minist Educ, Dalian 116023, Peoples R China
[2] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[3] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
基金
中国国家自然科学基金;
关键词
proton exchange membrane fuel cells; performance degradation; platinum loading; operating pressure; cathode stoichiometry; plate to channel width ratio; OPERATING-CONDITIONS; HYDROGEN; SYSTEM; MODEL; LAYER; DEGRADATION; DURABILITY; CATALYST; POLARIZATION; OPTIMIZATION;
D O I
10.3390/su15042902
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The choice of platinum loading and the choice of the operating parameters of the cell are crucial in order to enhance a PEMFC's endurance and, at the same time, to raise its performance. In this paper, a single-channel PEMFC counter-current model is developed to investigate the effects of a 0.3 mg/cm(2) Pt loading model and a 0.1 mg/cm(2) Pt loading model on the performance and durability of PEMFCs with different operating pressures, different cathode stoichiometry, and different channel and plate widths. It was found that increasing the PEMFC operating pressure and cathode stoichiometry would increase the cell performance and have some improvement for durability. Additionally, increasing the channel/plate width ratio would improve the cell performance while decreasing the cell durability.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Performance prediction of proton exchange membrane fuel cells using a three-dimensional model
    Rismanchi, B.
    Akbari, M. H.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (01) : 439 - 448
  • [2] Three-dimensional Numerical Simulation of Proton Exchange Membrane Fuel Cell: a Review
    Liu X.
    Jiang Y.
    Zhang X.
    Chen W.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2021, 41 (21): : 7352 - 7369
  • [3] The effects of operating parameters on the performance of proton exchange membrane fuel cells
    Dehsara, M.
    Kermani, M. J.
    MECHANIKA, 2013, (06): : 649 - 656
  • [4] Three-Dimensional Simulation of Water Management for High-Performance Proton Exchange Membrane Fuel Cell
    Zhang, Guobin
    Jiao, Kui
    SAE INTERNATIONAL JOURNAL OF ALTERNATIVE POWERTRAINS, 2018, 7 (03) : 233 - 247
  • [5] Three-dimensional study of stack on the performance of the proton exchange membrane fuel cell
    Lim, B. H.
    Majlan, E. H.
    Daud, W. R. W.
    Rosli, M. I.
    Husaini, T.
    ENERGY, 2019, 169 : 338 - 343
  • [6] A Three-Dimensional Simulation Model for Proton Exchange Membrane Fuel Cells with Conventional and Bimetallic Catalyst Layers
    Tzelepis, Stefanos
    Kavadias, Kosmas A.
    Marnellos, George E.
    ENERGIES, 2023, 16 (10)
  • [7] Three-dimensional numerical simulation of a straight channel proton exchange membrane fuel cell
    Hu, GL
    Chen, S
    JOURNAL OF VISUALIZATION, 2005, 8 (03) : 196 - 196
  • [8] Three-dimensional simulation of heat and mass transfer in proton exchange membrane fuel cell
    Tu, Haitao
    Sun, Wence
    Xie, Maozhao
    Abudula, Abuliti
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2007, 28 (04): : 368 - 374
  • [9] Three-dimensional numerical simulation of a straight channel proton exchange membrane fuel cell
    G. L. Hu
    S. Chen
    Journal of Visualization, 2005, 8 : 196 - 196
  • [10] Long-term Forecasting of a Degradation Indicator for Proton Exchange Membrane Fuel Cells
    Mendoza, Diana Sofia
    Steiner, Nadia Yousfi
    Chanal, Damien
    Pahon, Elodie
    Hissel, Daniel
    Pera, Marie-Cecile
    Chamagne, Didier
    2023 IEEE VEHICLE POWER AND PROPULSION CONFERENCE, VPPC, 2023,