Thermal explosion energy evaluation on LCO and NCM Li-ion polymer batteries using thermal analysis methodology

被引:5
|
作者
Wang, Yih-Wen [1 ]
Huang, Hsiao-Ling [1 ]
机构
[1] China Med Univ No, Coll Publ Hlth, Dept Occupat Safety & Hlth, 100,Sect 1,Jingmao Rd, Taichung 406040, Taiwan
关键词
Lithium-ion polymer battery; Heat capacity; Enthalpy; Fire-explosion behaviour; Thermokinetic data; ACCELERATING RATE CALORIMETRY; HEAT-CAPACITY; LITHIUM; TEMPERATURE; RUNAWAY; ELECTRODES;
D O I
10.1016/j.psep.2023.06.093
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
An advanced lithium-ion polymer battery (LIPB) has higher energy density, long-life cycle, and flexible configuration that can be arbitrarily shaped. It is the mainstream candidate for electronics products as energy storage device. However, an energetic LIPB will generate an abnormal electrochemistry reaction and will even cause spontaneous ignition to the battery pack in case cells fail, such as a short circuit or thermal runaway. Two commercial 603450 LIPBs, whose cathodes include lithium cobalt oxide (LiCoO2, LCO) and lithium nickel cobalt manganese oxide (LiNixCoyMnzO2, NCM), were examined for their thermophysical data. Enhanced calorimetry methods are modified to analyse an LIPB's heat capacity and enthalpy. In case thermal runaway the heat capacity and enthalpy are 0.99 kJ g-1 K-1 and 11.76 kJ for an LCO cell and 0.96 kJ g-1 K-1 and 10.68 kJ for an NCM cell, respectively. Furthermore, TNT equivalency mass is 7.62 g for an LCO and 7.01 g for an NCM cell. An LIPB is examined to identify the fire-explosion behaviour and thermokinetic data for enhancing battery thermal management.
引用
收藏
页码:82 / 94
页数:13
相关论文
共 50 条
  • [1] Effects of Overdischarge Rate on Thermal Runaway of NCM811 Li-Ion Batteries
    Wang, Dong
    Zheng, Lili
    Li, Xichao
    Du, Guangchao
    Zhang, Zhichao
    Feng, Yan
    Jia, Longzhou
    Dai, Zuoqiang
    ENERGIES, 2020, 13 (15)
  • [2] Thermal risk evaluation of concentrated electrolytes for Li-ion batteries
    Zhao, Liwei
    Inoishi, Atsushi
    Okada, Shigeto
    JOURNAL OF POWER SOURCES ADVANCES, 2021, 12
  • [3] Pushing the thermal limits of Li-ion batteries
    Kohlmeyer, Ryan R.
    Horrocks, Gregory A.
    Blake, Aaron J.
    Yu, Zhenning
    Maruyama, Benji
    Huang, Hong
    Durstock, Michael F.
    NANO ENERGY, 2019, 64
  • [4] Thermal Simulations for 18650 Li-Ion Batteries
    Jano, Rajmond
    Ilies, Adelina Ioana
    Fodor, Alexandra
    2022 IEEE 28TH INTERNATIONAL SYMPOSIUM FOR DESIGN AND TECHNOLOGY IN ELECTRONIC PACKAGING (SIITME), 2022, : 70 - 73
  • [5] Adaptive thermal modeling of Li-ion batteries
    Rad, M. Shadman
    Danilov, D. L.
    Baghalha, M.
    Kazemeini, M.
    Notten, P. H. L.
    ELECTROCHIMICA ACTA, 2013, 102 : 183 - 195
  • [6] Energy generation mechanisms for a Li-ion cell in case of thermal explosion: A review
    Wang, Yih-Wen
    Shu, Chi -Min
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [7] Mechanically induced thermal runaway severity analysis for Li-ion batteries
    Lin, L. S.
    Li, J. L.
    Fishman, I. M.
    Torres-Castro, L.
    Preger, Y.
    De Angelis, V.
    Lamb, J.
    Zhu, X. Q.
    Allu, S.
    Wang, H.
    JOURNAL OF ENERGY STORAGE, 2023, 61
  • [8] Thermal Analysis of Li-ion Battery
    Hadia, Fofana Gaoussou
    Tong, Zhang You
    FRONTIERS OF MANUFACTURING SCIENCE AND MEASURING TECHNOLOGY III, PTS 1-3, 2013, 401 : 450 - 455
  • [9] Thermal runaway of large automotive Li-ion batteries
    Golubkov, Andrey W.
    Planteu, Rene
    Krohn, Philipp
    Rasch, Bernhard
    Brunnsteiner, Bernhard
    Thaler, Alexander
    Hacker, Viktor
    RSC ADVANCES, 2018, 8 (70): : 40172 - 40186
  • [10] Key Characteristics for Thermal Runaway of Li-ion Batteries
    Feng, Xuning
    Zheng, Siqi
    Ren, Dongsheng
    He, Xiangming
    Wang, Li
    Liu, Xiang
    Li, Maogang
    Ouyang, Minggao
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 4684 - 4689