INFRDET: IoT network flow regulariser-based detection and classification of IoT botnet

被引:1
|
作者
Garg, Umang [1 ,2 ]
Kumar, Santosh [1 ]
Kumar, Manoj [1 ]
机构
[1] Graph Era Deemed Univ, Dept Comp Sci & Engn, Dehra Dun, Uttarakhand, India
[2] Graph Era Hill Univ, Dehra Dun, Uttarakhand, India
关键词
IoT botnet; deep learning; CNN; DDoS; VGG; INTERNET; THINGS;
D O I
10.1504/IJGUC.2023.135344
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Internet of Things (IoT) botnet is one of the attacks which affect the working of authentic IoT devices. In this paper, a novel light-weighted intelligent system has been devised by using traffic analysis and regulators to detect botnet-infected devices in the IoT network. The system operates on a low-powered Raspberry Pi device with network packet counts. Besides, an IoT Network Flow Regulariser (INFR) algorithm is proposed and embedded for transforming network flows to the uniform length traffic frame. The experimental results show the better performance of the proposed system with the INFR algorithm in comparison to the existing work. In addition, to classify the benign and malicious traffic, a novel method is used to visualise the network activities through graphical heatmaps. These heatmaps are further investigated using a hybrid Convolution Neural Network (CNN) model without and with the INFR algorithm and therefore receive remarkable differences in terms of better results.
引用
收藏
页码:606 / 616
页数:12
相关论文
共 50 条
  • [1] Network Flow based IoT Botnet Attack Detection using Deep Learning
    Sriram, S.
    Vinayakumar, R.
    Alazab, Mamoun
    Soman, K. P.
    IEEE INFOCOM 2020 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2020, : 189 - 194
  • [2] IoT Botnet Attacks Detection and Classification Based on Ensemble Learning
    Cao, Yongzhong
    Wang, Zhihui
    Ding, Hongwei
    Zhang, Jiale
    Li, Bin
    ARTIFICIAL INTELLIGENCE AND ROBOTICS, ISAIR 2023, 2024, 1998 : 45 - 55
  • [3] IoT Botnet: The Largest Threat to the IoT Network
    Dange, Smita
    Chatterjee, Madhumita
    DATA COMMUNICATION AND NETWORKS, GUCON 2019, 2020, 1049 : 137 - 157
  • [4] A comprehensive node-based botnet detection framework for IoT network
    Aldaej, Abdulaziz
    Ahanger, Tariq Ahamed
    Atiquzzaman, Mohammed
    Ullah, Imdad
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (07): : 9261 - 9281
  • [5] IoT Botnet Detection on Flow Data using Autoencoders
    Kompougias, Orestis
    Papadopoulos, Dimitris
    Mantas, Evangelos
    Litke, Antonis
    Papadakis, Nikolaos
    Paraschos, Dimitris
    Kourtis, Akis
    Xylouris, George
    2021 IEEE INTERNATIONAL MEDITERRANEAN CONFERENCE ON COMMUNICATIONS AND NETWORKING (IEEE MEDITCOM 2021), 2021, : 506 - 511
  • [6] Detection of IoT Botnet Based on Deep Learning
    Liu, Junyi
    Liu, Shiyue
    Zhang, Sihua
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 8381 - 8385
  • [7] IoT Botnet Threat Detection and Classification: A Binary Class Approach
    Maliha, Maisha
    Ankam, Vaishnavi Satya Sreeja
    Rudraraju, Nagamani
    Al-Mawee, Wassnaa
    2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,
  • [8] Unsupervised Anomaly Based Botnet Detection in IoT Networks
    Nomm, Sven
    Bahsi, Hayretdin
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 1048 - 1053
  • [9] IoT Botnet Detection Based on the Behaviors of DNS Queries
    Fan, Chun-I
    Shie, Cheng-Han
    Hsu, Che-Ming
    Ban, Tao
    Morikawa, Tomohiro
    Takahashi, Takeshi
    2022 5TH IEEE CONFERENCE ON DEPENDABLE AND SECURE COMPUTING (IEEE DSC 2022), 2022,
  • [10] A comparative analysis of using ensemble trees for botnet detection and classification in IoT
    Saied, Mohamed
    Guirguis, Shawkat
    Madbouly, Magda
    SCIENTIFIC REPORTS, 2023, 13 (01)