Prediction of a planar BxP monolayer with inherent metallicity and its potential as an anode material for Na and K-ion batteries: a first-principles study

被引:1
|
作者
Liu, Fang [2 ]
Chen, Xianfei [1 ,2 ]
Huang, Yi [1 ]
Shu, Chaozhu [1 ,2 ]
Li, Na [3 ]
Xiao, Beibei [4 ]
Wang, Lianli [5 ]
机构
[1] Chengdu Univ Technol, Key Lab Geohazard Prevent & Geoenvironm Protect, Chengdu 610059, Peoples R China
[2] Chengdu Univ Technol, Coll Mat & Chem & Chem Engn, Chengdu 610059, Peoples R China
[3] Chengdu Univ Technol, Coll Energy Resources, State Key Lab Oil & Gas Reservoir Geol & Exploitat, Chengdu 610059, Peoples R China
[4] Jiangsu Univ Sci & Technol, Sch Energy & Power Engn, Zhenjiang 212003, Peoples R China
[5] Xian Univ Sci & Technol, Sch Mat Sci & Engn, Xian 710054, Peoples R China
基金
中国国家自然科学基金;
关键词
LI-ION; ENERGY-STORAGE; LITHIUM-ION; BOROPHENE; CAPACITY; GRAPHENE; PHOSPHORENE;
D O I
10.1039/d3cp03438k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Borophene, the lightest two-dimensional material, exhibits exceptional storage capacity as an anode material for sodium-ion batteries (NIBs) and potassium-ion batteries (PIBs). However, the pronounced surface activity gives rise to strong interfacial bonding between borophene and the metal substrate it grows on. Incorporation of heterogeneous atoms capable of forming strong bonds with boron to increase borophene stability while preserving its intrinsic metallic conductivity and high theoretical capacity remains a great challenge. In this study, a particle swarm optimization (PSO) method was employed to determine several new two-dimensional monolayer boron phosphides (BxP, x = 3-6) with rich boron components. The obtained BxP has great potential to be used as an anode material for sodium-ion batteries/potassium-ion batteries (SIBs/PIBs), according to DFT calculations. BxP demonstrates remarkable stability compared with borophene which ensures their feasibility of experimental synthesis. Moreover, B5P and B6P exhibit high electronic conductivity and ionic conductivity, with migration energy barriers of 0.20 and 0.21 eV for Na ions and 0.07 eV for K ions. Moreover, the average open circuit voltage falls within a favorable range of 0.25-0.73 V, which results in a high storage capacity of 1119-2103 mA h g(-1) for SIBs and 631-839 mA h g(-1) for PIBs. This study paves the way for exploring boron-rich 2D electrode materials for energy applications and provides valuable insights into the functionalization and stabilization of borophene.
引用
收藏
页码:27994 / 28005
页数:12
相关论文
共 50 条
  • [1] B3S2 monolayer as an anode material for Na/K-ion batteries: a first-principles study
    Wang, Danhong
    Yang, Zhifang
    Li, Wenliang
    Zhang, Jingping
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (36) : 24468 - 24474
  • [2] SiP2 monolayer as potential anode material for Na/K-ion batteries predicted from first-principles calculations
    Wang, Mengke
    Xie, Yiqun
    Sun, Shoutian
    Ye, Xiang
    SURFACES AND INTERFACES, 2024, 54
  • [3] Metallic B2Si monolayer as a flexible anode material for Li, Na and K-ion batteries: A first principles study
    Du, Junliang
    Lin, He
    Huang, Yong
    PHYSICA B-CONDENSED MATTER, 2024, 675
  • [4] Defective phosphorene as an anode material for high-performance Li-, Na-, and K-ion batteries: a first-principles study
    Atashzar, Seyyed Mahdi
    Javadian, Soheila
    Gharibi, Hussein
    Rezaei, Zahra
    NANOSCALE, 2020, 12 (39) : 20364 - 20373
  • [5] Graphene-like SbP3 monolayer as a potential anode material for Na/K ion batteries: First-principles calculations
    Rghioui, Hamza
    Zyane, Mohamed Said
    Jappor, Hamad Rahman
    Diani, Mustapha
    Marjaoui, Adil
    Zanouni, Mohamed
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2025, 201
  • [6] Phosphorene as an anode material for Na-ion batteries: a first-principles study
    Kulish, Vadym V.
    Malyi, Oleksandr I.
    Persson, Clas
    Wu, Ping
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (21) : 13921 - 13928
  • [7] α-graphyne as a promising anode material for Na-ion batteries: a first-principles study
    Singh, Tavinder
    Choudhuri, Jyoti Roy
    Rana, Malay Kumar
    NANOTECHNOLOGY, 2023, 34 (04)
  • [8] First-Principles Design and Investigation of Siligraphene as a Potential Anode Material for Na-Ion Batteries
    Yadav, Neha
    Chakraborty, Brahmananda
    Kumar, T. J. Dhilip
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (21): : 11293 - 11300
  • [9] First-principles study of ZIF-8 as anode for Na and K ion batteries
    Yu, Yingjian
    Wang, Dongxu
    Luo, Jinlong
    Xiang, Youlin
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 659
  • [10] 2D phosphorus carbide as promising anode materials for Na/K-ion batteries from first-principles study
    Mao, Bingxin
    Li, Hui
    Duan, Qian
    Hou, Jianhua
    JOURNAL OF MOLECULAR MODELING, 2022, 28 (06)