Analysis of divergence free conforming virtual elements for the Brinkman problem

被引:4
|
作者
Huang, Xuehai [1 ]
Wang, Feng [2 ]
机构
[1] Shanghai Univ Finance & Econ, Sch Math, Shanghai 200433, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
来源
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES | 2023年 / 33卷 / 06期
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Brinkman model; virtual element; divergence free; MIXED FINITE-ELEMENT; FREE STOKES ELEMENTS; RIGHT INVERSE; DARCY; DISCRETE; COMPLEX; CONSTRUCTION; PROJECTIONS; CONTINUITY; OPERATOR;
D O I
10.1142/S021820252350029X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop stability analysis, including inverse inequality, L-2 norm equivalence and interpolation error estimates, for divergence free conforming virtual elements in arbitrary dimension. A local energy projector based on the local Stokes problem is suggested, which commutes with the divergence operator. After defining a discrete bilinear form and a stabilization involving only the boundary degrees of freedom (DoF) and parts of the interior DoF, a new divergence free conforming virtual element method is advanced for the Brinkman problem, which can be reduced to a simpler method due to the divergence free discrete velocity. An optimal convergence rate is derived for the discrete method. Furthermore, we achieve a uniform half convergence rate of the discrete method in consideration of the boundary layer phenomenon. Finally, some numerical results are provided to validate the convergence of the discrete method.
引用
收藏
页码:1245 / 1280
页数:36
相关论文
共 50 条
  • [1] H(div)-CONFORMING FINITE ELEMENTS FOR THE BRINKMAN PROBLEM
    Konno, Juho
    Stenberg, Rolf
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (11): : 2227 - 2248
  • [2] DIVERGENCE FREE VIRTUAL ELEMENTS FOR THE STOKES PROBLEM ON POLYGONAL MESHES
    da Veiga, Lourenco Beirao
    Lovadina, Carlo
    Vacca, Giuseppe
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (02): : 509 - 535
  • [3] Conforming and divergence-free Stokes elements in three dimensions
    Guzman, Johnny
    Neilan, Michael
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (04) : 1489 - 1508
  • [4] CONFORMING AND DIVERGENCE-FREE STOKES ELEMENTS ON GENERAL TRIANGULAR MESHES
    Guzman, Johnny
    Neilan, Michael
    MATHEMATICS OF COMPUTATION, 2014, 83 (285) : 15 - 36
  • [5] PIECEWISE DIVERGENCE-FREE NONCONFORMING VIRTUAL ELEMENTS FOR STOKES PROBLEM IN ANY DIMENSIONS
    Wei, Huayi
    Huang, Xuehai
    Li, Ao
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (03) : 1835 - 1856
  • [6] Non-Conforming Finite Element Method for the Brinkman Problem
    Konno, Juho
    Stenberg, Rolf
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009, 2010, : 515 - 522
  • [7] An H1-conforming virtual element for Darcy and Brinkman equations
    Vacca, Giuseppe
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (01): : 159 - 194
  • [8] A family of nonconforming elements for the Brinkman problem
    Guzman, Johnny
    Neilan, Michael
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (04) : 1484 - 1508
  • [9] THE DIVERGENCE-FREE NONCONFORMING VIRTUAL ELEMENT FOR THE STOKES PROBLEM
    Zhao, Jikun
    Zhang, Bei
    Mao, Shipeng
    Chen, Shaochun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (06) : 2730 - 2759
  • [10] ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE DARCY-STOKES-BRINKMAN EQUATIONS
    Evans, John A.
    Hughes, Thomas J. R.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (04): : 671 - 741