Traffic Flow Optimization using a Chaotic Boltzmann Machine Annealer on an FPGA

被引:0
|
作者
Yoshioka, Kanta [1 ]
Tanaka, Yuichiro [2 ]
Tamukoh, Hakaru [1 ,2 ]
机构
[1] Kyushu Inst Technol, Grad Sch Life Sci & Syst Engn, Kitakyushu, Fukuoka, Japan
[2] Kyushu Inst Technol, Res Ctr Neuromorph AI Hardware, Kitakyushu, Fukuoka, Japan
关键词
neural networks; Ising machine; annealing machine; field-programmable gate array;
D O I
10.1109/ICFPT59805.2023.00038
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate a chaotic Boltzmann machine annealer, which is a field-programmable gate array (FPGA)-based high-performance annealing machine, and a control system powered by two open-source software packages. The annealer is employed in solving a large-scale real-world optimization problem, the traffic flow optimization. This involves distributing 500 car routes between the Haneda Airport area to the Pacifico Yokohama area, the venue of the International Conference on Field Programmable Technology 2023, while minimizing the total driving distance and preventing traffic jams. We obtain solutions that are comparable in accuracy to solutions of simulated annealing running on a graphics processing unit (GPU-SA) and a central processing unit (CPU-SA). The annealing machine on an FPGA is approximately 571 and 97600 times as fast as the GPUSA and the CPU-SA, respectively. We will demonstrate solving traffic flow optimization in the towns familiar to the visitors.
引用
收藏
页码:266 / 269
页数:4
相关论文
共 50 条
  • [1] Traffic Flow Optimization using a Chaotic Boltzmann Machine Annealer on an FPGA
    Yoshioka, Kanta
    Tanaka, Yuichiro
    Tamukoh, Hakaru
    Proceedings - International Conference on Field-Programmable Technology, ICFPT, 2023, : 266 - 267
  • [2] FPGA Implementation of a Chaotic Boltzmann Machine Annealer
    Yoshioka, Kanta
    Katori, Yuichi
    Tanaka, Yuichiro
    Nomura, Osamu
    Morie, Takashi
    Tamukoh, Hakaru
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [3] FPGA Implementation for Large Scale Reservoir Computing based on Chaotic Boltzmann Machine
    Matsumoto, Shigeki
    Ichikawa, Yuki
    Kajihara, Nobuki
    Tamukoh, Hakaru
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [4] Boltzmann machine modeling of layered MoS2 synthesis on a quantum annealer
    Liu, Jeremy
    Mohan, Ankith
    Kalia, Rajiv K.
    Nakano, Aiichiro
    Nomura, Ken-ichi
    Vashishta, Priya
    Yao, Ke-Thia
    COMPUTATIONAL MATERIALS SCIENCE, 2020, 173
  • [5] Simulation and optimization of chaotic micromixer using lattice Boltzmann method
    Li, CA
    Chen, TN
    SENSORS AND ACTUATORS B-CHEMICAL, 2005, 106 (02) : 871 - 877
  • [6] Boltzmann machine modeling of layered MoS2 synthesis on a quantum annealer
    Liu, Jeremy
    Mohan, Ankith
    Kalia, Rajiv K.
    Nakano, Aiichiro
    Nomura, Ken-ichi
    Vashishta, Priya
    Yao, Ke-Thia
    Nomura, Ken-ichi (knomura@usc.edu), 1600, Elsevier B.V., Netherlands (173):
  • [7] FPGA Implementation of Hardware-Oriented Chaotic Boltzmann Machines
    Kawashima, Ichiro
    Morie, Takashi
    Tamukoh, Hakaru
    IEEE ACCESS, 2020, 8 : 204360 - 204377
  • [8] Hybrid Optimization Method Using Simulated-Annealing-Based Ising Machine and Quantum Annealer
    Kikuchi, Shuta
    Togawa, Nozomu
    Tanaka, Shu
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2023, 92 (12)
  • [9] COMBINATORIAL OPTIMIZATION ON A BOLTZMANN MACHINE
    KORST, JHM
    AARTS, EHL
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1989, 6 (02) : 331 - 357
  • [10] An FPGA Implementation of a Restricted Boltzmann Machine Classifier Using Stochastic Bit Streams
    Li, Bingzhe
    Najafi, M. Hassan
    Lilja, David J.
    PROCEEDINGS OF THE ASAP2015 2015 IEEE 26TH INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURES AND PROCESSORS, 2015, : 68 - 69