Offline Reinforcement Learning for Asynchronous Task Offloading in Mobile Edge Computing

被引:2
|
作者
Zhang, Bolei [1 ]
Xiao, Fu [1 ]
Wu, Lifa [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Comp, Nanjing 210023, Jiangsu, Peoples R China
关键词
Task offloading; mobile edge computing; offline reinforcement learning; mobile sensing; RESOURCE-ALLOCATION;
D O I
10.1109/TNSM.2023.3316626
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Edge servers, which are located in close proximity to mobile users, have become key components for providing augmented computation and bandwidth. As the resources of edge servers are limited and shared, it is critical for the decentralized mobile users to determine the amount of offloaded workload, to avoid competition or waste of the public resources at the edge servers. Reinforcement learning (RL) methods, which are sequential and model-free, have been widely considered as a promising approach. However, directly deploying RL in edge computing remains elusive, since arbitrary exploration in real online environments often leads to poor user experience. To avoid the costly interactions, in this paper, we propose an offline RL framework which can be optimized by using a static offline dataset only. In essence, our method first trains a supervised offline model to simulate the edge computing environment dynamics, and then optimize the offloading policy in the offline environment with cost-free interactions. As the offloading requests are mostly asynchronous, we adopt a mean-field approach that treats all neighboring users as a single agent. The problem can then be simplified and reduced to a game between only two players. Moreover, we limit the length of the offline model rollout to ensure the simulated trajectories are accurate, so that the trained offloading policies can be generalized to unseen online environments. Theoretical analyses are conducted to validate the accuracy and convergence of our algorithm. In the experiments, we first train the offline simulation environment with a real historical data set, and then optimize the offloading policy in this environment model. The results show that our algorithm can converge very fast during training. In the execution, the algorithm still achieves high performance in the online environment.
引用
收藏
页码:939 / 952
页数:14
相关论文
共 50 条
  • [1] Deep Reinforcement Learning for Task Offloading in Mobile Edge Computing Systems
    Tang, Ming
    Wong, Vincent W. S.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (06) : 1985 - 1997
  • [2] Decentralized Task Offloading in Edge Computing: An Offline-to-Online Reinforcement Learning Approach
    Lin, Hongcai
    Yang, Lei
    Guo, Hao
    Cao, Jiannong
    IEEE TRANSACTIONS ON COMPUTERS, 2024, 73 (06) : 1603 - 1615
  • [3] Hybrid Online-Offline Learning for Task Offloading in Mobile Edge Computing Systems
    Sohaib, Muhammad
    Jeon, Sang-Woon
    Yu, Wei
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (07) : 6873 - 6888
  • [4] Task offloading mechanism based on federated reinforcement learning in mobile edge computing
    Li, Jie
    Yang, Zhiping
    Wang, Xingwei
    Xia, Yichao
    Ni, Shijian
    DIGITAL COMMUNICATIONS AND NETWORKS, 2023, 9 (02) : 492 - 504
  • [5] Task offloading mechanism based on federated reinforcement learning in mobile edge computing
    Jie Li
    Zhiping Yang
    Xingwei Wang
    Yichao Xia
    Shijian Ni
    Digital Communications and Networks, 2023, 9 (02) : 492 - 504
  • [6] Task graph offloading via deep reinforcement learning in mobile edge computing
    Liu, Jiagang
    Mi, Yun
    Zhang, Xinyu
    Li, Xiaocui
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 158 : 545 - 555
  • [7] Research on Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing
    Lu H.
    Gu C.
    Luo F.
    Ding W.
    Yang T.
    Zheng S.
    Gu, Chunhua (chgu@ecust.edu.cn), 1600, Science Press (57): : 1539 - 1554
  • [8] Task Offloading Optimization in Mobile Edge Computing based on Deep Reinforcement Learning
    Silva, Carlos
    Magaia, Naercio
    Grilo, Antonio
    PROCEEDINGS OF THE INT'L ACM CONFERENCE ON MODELING, ANALYSIS AND SIMULATION OF WIRELESS AND MOBILE SYSTEMS, MSWIM 2023, 2023, : 109 - 118
  • [9] Deep Reinforcement Learning for Task Offloading in Edge Computing
    Xie, Bo
    Cui, Haixia
    2024 4TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND INTELLIGENT SYSTEMS ENGINEERING, MLISE 2024, 2024, : 250 - 254
  • [10] Deep Reinforcement Learning Method for Task Offloading in Mobile Edge Computing Networks Based on Parallel Exploration with Asynchronous Training
    Chen, Junyan
    Jin, Lei
    Yao, Rui
    Zhang, Hongmei
    MOBILE NETWORKS & APPLICATIONS, 2024,