Effect of heat treatment on the microstructure and magnetic properties of laser powder bed fusion processed equiatomic Co-Fe

被引:6
|
作者
Liogas, Konstantinos A. [1 ,2 ,7 ]
Lau, Kwang Boon [2 ]
Wang, Zifan [3 ]
Brown, David N. [4 ]
Polatidis, Efthymios [5 ]
Wang, Pei [2 ,6 ]
Korsunsky, Alexander M. [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, MBLEM, Parks Rd, Oxford OX1 3PJ, England
[2] Agcy Sci Technol & Res, Inst Mat Res & Engn, 2 Fusionopolis Way, Singapore 138634, Singapore
[3] Univ Cambridge, Dept Engn, Trumpington St, Cambridge CB2 1PZ, England
[4] Univ Birmingham, Sch Met & Mat, Edgbaston B15 2TT, England
[5] Paul Scherrer Inst, Lab Neutron Scattering & Imaging LNS, CH-5232 Villigen, Switzerland
[6] Singapore Inst Technol, Engn Cluster, 10 Dover Dr, Singapore 519961, Singapore
[7] Univ Oxford, Dept Engn Sci, MBLEM, Parks Rd, Oxford OX1 3PJ, England
基金
英国工程与自然科学研究理事会;
关键词
NI-FE; ALLOYS; TEMPERATURE; COERCIVITY; IRON; PERMEABILITY; GROWTH;
D O I
10.1016/j.addma.2023.103499
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Equiatomic Cobalt-Iron (Co-Fe 50%at.) has great potential as a soft magnetic alloy, but its wider use has been limited by its poor workability and strength. Recent advancements in Laser Powder Bed Fusion (LPBF), an Additive Manufacturing (AM) technique, provided a new pathway for constructing fully dense, structurally sound, complex-shaped components from bulk equiatomic Co-Fe in a single process step. To obtain the desirable soft magnetic performance in the alloy, thermal post-processing with a controlled slow cooling needs to be applied. In order to identify the optimum heating conditions, several single and multiple step heat treatment profiles were performed and compared. The effects of the thermal post-processing on the microstructure, structural ordering, and functional properties of the alloy after each heat treatment were investigated using electron microscopy, neutron diffraction (ND), electron backscatter diffraction (EBSD), and quasi-static magnetic characterisation in a closed loop magnetic circuit. Results have shown that a normalisation heat treatment at 1300 K for 2-hours followed by a 4-hour primary heat treatment at 1123 K and slow cooling to room temperature produced a recrystallised microstructure characterised by predominantly equiaxed grains with an average size of up to 61 mu m, and a fully ordered B2 structure. The quasi-static soft magnetic properties obtained were favourable compared to those of commercial Co-Fe grades, with maximum relative permeability higher than 8000, coercivity as low as 112 A/m and magnetic saturation polarization of 2.39 Tesla. These findings provide the basis to enable the manufacturing of three-dimensional complex-shaped electromagnetic cores by LPBF.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Effect of heat treatment on the microstructure and properties of CuCrZr prepared by laser powder bed fusion
    Chen, Xingfu
    Dong, Peng
    Zeng, Yong
    Yao, Haihua
    Chen, Jimin
    MATERIALS CHARACTERIZATION, 2024, 214
  • [2] Effect of Heat Treatment on the Microstructure and Mechanical Properties of Al-7Si-0.7Mg2.5Fe Processed by Laser Powder Bed Fusion
    Pereira, Leandro
    Bomfim, Pamela
    Otani, Lucas
    Freitas, Brenda
    Botta, Walter
    Bolfarini, Claudemiro
    Kiminami, Claudio
    Gargarella, Piter
    MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2024, 27
  • [3] Microstructure characterization and mechanical performance of laser powder bed fusion processed AlMgScZr alloy: Effect of heat treatment
    Li, Xiang
    Liu, Yunzhong
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 862
  • [4] Influence of heat treatment on microstructure and magnetic properties of laser powder bed fusion generated NdFeB magnets
    Genc, Kuebra
    Todd, Iain
    Mumtaz, Kamran
    PROGRESS IN ADDITIVE MANUFACTURING, 2025,
  • [5] Effect of heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Inconel 625 alloy processed by laser powder bed fusion
    Kreitcberg, Alena
    Brailovski, Vladimir
    Turenne, Sylvain
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 689 : 1 - 10
  • [6] Heat Treatment Effect on Magnetic Properties in Rapidly Solidified Co-Fe Alloy
    Kimura, Natsuko
    Kubota, Takeshi
    Yamamoto, Takahisa
    Fukuoka, Syuta
    Furuya, Yasubumi
    JOURNAL OF THE JAPAN INSTITUTE OF METALS AND MATERIALS, 2015, 79 (09) : 441 - 446
  • [7] CuCrZr processed by laser powder bed fusion-Processability and influence of heat treatment on electrical conductivity, microstructure and mechanical properties
    Wegener, Thomas
    Koopmann, Julian
    Richter, Julia
    Krooss, Philipp
    Niendorf, Thomas
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2021, 44 (09) : 2570 - 2590
  • [8] HEAT TREATMENT EFFECT ON MARAGING STEEL MANUFACTURED BY LASER POWDER BED FUSION TECHNOLOGY: MICROSTRUCTURE AND MECHANICAL PROPERTIES
    Stornelli, Giulia
    Gaggia, Damiano
    Rallini, Marco
    Di Schino, Andrea
    ACTA METALLURGICA SLOVACA, 2021, 27 (03): : 122 - 126
  • [9] Influence of heat treatments on microstructure evolution and mechanical properties of Inconel 625 processed by laser powder bed fusion
    Marchese, Giulio
    Lorusso, Massimo
    Parizia, Simone
    Bassini, Emilio
    Lee, Ji-Won
    Calignano, Flaviana
    Manfredi, Diego
    Terner, Mathieu
    Hong, Hyun-Uk
    Ugues, Daniele
    Lombardi, Mariangela
    Biamino, Sara
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 729 : 64 - 75
  • [10] Effects of Magnetic Abrasive Finishing on Microstructure and Mechanical Properties of Inconel 718 Processed by Laser Powder Bed Fusion
    Zhao, Yunhao
    Ratay, Jason
    Li, Kun
    Yamaguchi, Hitomi
    Xiong, Wei
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2022, 6 (02):