On pointwise a.e. convergence of multilinear operators

被引:1
|
作者
Grafakos, Loukas [1 ]
He, Danqing [2 ]
Honzik, Petr [3 ]
Park, Bae Jun [4 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Fudan Univ, Sch Math Sci, Shanghai, Peoples R China
[3] Charles Univ Prague, Dept Math, Prague 1, Czech Republic
[4] Sungkyunkwan Univ, Dept Math, Suwon 16419, South Korea
基金
国家重点研发计划; 上海市自然科学基金;
关键词
42B15; 42B25;
D O I
10.4153/S0008414X23000305
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we obtain the pointwise almost everywhere convergence for two families of multilinear operators: (a) the doubly truncated homogeneous singular integral operators associated with L-q functions on the sphere and (b) lacunary multiplier operators of limited smoothness. The a.e. convergence is deduced from the L-2 x. x L-2 -> L-2/m boundedness of the associated maximal multilinear operators.
引用
收藏
页码:1005 / 1032
页数:28
相关论文
共 50 条