Model averaging in calibration of near-infrared instruments with correlated high-dimensional data

被引:1
|
作者
Salaki, Deiby Tineke [1 ]
Kurnia, Anang [2 ]
Sartono, Bagus [2 ]
Mangku, I. Wayan [3 ]
Gusnanto, Arief [4 ]
机构
[1] Sam Ratulangi Univ, Dept Math, Manado, Indonesia
[2] Bogor Agr Univ, Dept Stat, Bogor, Indonesia
[3] Bogor Agr Univ, Dept Math, Bogor, Indonesia
[4] Univ Leeds, Dept Stat, Leeds LS2 9JT, W Yorkshire, England
关键词
Model averaging; high-dimensional data; multicollinearity; calibration; near-infrared spectroscopy; VARIABLE SELECTION; RIDGE-REGRESSION; LASSO;
D O I
10.1080/02664763.2022.2122947
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Model averaging (MA) is a modelling strategy where the uncertainty in the configuration of selected variables is taken into account by weight-combining each estimate of the so-called 'candidate model'. Some studies have shown that MA enables better prediction, even in high-dimensional cases. However, little is known about the model prediction performance at different types of multicollinearity in high-dimensional data. Motivated by calibration of near-infrared (NIR) instruments,we focus on MA prediction performance in such data. The weighting schemes that we consider are based on the Akaike's information criterion (AIC), Mallows' C-p, and cross-validation. For estimating the model parameters, we consider the standard least squares and the ridge regression methods. The results indicate that MA outperforms model selection methods such as LASSO and SCAD in high-correlation data. The use of Mallows' C-p and cross-validation for the weights tends to yield similar results in all structures of correlation, although the former is generally preferred. We also find that the ridge model averaging outperforms the least-squares model averaging. This research suggests ridge model averaging to build a relatively better prediction of the NIR calibration model.
引用
收藏
页码:279 / 297
页数:19
相关论文
共 50 条
  • [1] Model averaging with high-dimensional dependent data
    Zhao, Shangwei
    Zhou, Jianhong
    Li, Hongjun
    ECONOMICS LETTERS, 2016, 148 : 68 - 71
  • [2] AN UPDATE ON VISIBLE AND NEAR-INFRARED CALIBRATION OF SATELLITE INSTRUMENTS
    PRICE, JC
    REMOTE SENSING OF ENVIRONMENT, 1988, 24 (03) : 419 - 422
  • [3] Functional Data Analysis for the Development of a Calibration Model for Near-infrared Data
    Jiang, Cheng
    Martin, Elaine B.
    18TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2008, 25 : 683 - 688
  • [4] Clustering of High-Dimensional and Correlated Data
    McLachlan, Geoffrey J.
    Ng, Shu-Kay
    Wang, K.
    DATA ANALYSIS AND CLASSIFICATION, 2010, : 3 - 11
  • [5] Aggregated functional data model for near-infrared spectroscopy calibration and prediction
    Dias, Ronaldo
    Garcia, Nancy L.
    Ludwig, Guilherme
    Saraiva, Marley A.
    JOURNAL OF APPLIED STATISTICS, 2015, 42 (01) : 127 - 143
  • [6] High-dimensional model averaging for quantile regression
    Xie, Jinhan
    Ding, Xianwen
    Jiang, Bei
    Yan, Xiaodong
    Kong, Linglong
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2024, 52 (02): : 618 - 635
  • [7] TEMPERATURE-COMPENSATING CALIBRATION TRANSFER FOR NEAR-INFRARED FILTER INSTRUMENTS
    WANG, YD
    KOWALSKI, BR
    ANALYTICAL CHEMISTRY, 1993, 65 (09) : 1301 - 1303
  • [8] Rank-Based Greedy Model Averaging for High-Dimensional Survival Data
    He, Baihua
    Ma, Shuangge
    Zhang, Xinyu
    Zhu, Li-Xing
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (544) : 2658 - 2670
  • [9] Ensemble calibration model of near-infrared spectroscopy based on functional data analysis
    Yu, Shaohui
    Liu, Jing
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2022, 280
  • [10] Application of High-Dimensional Feature Selection in Near-Infrared Spectroscopy of Cigarettes' Qualitative Evaluation
    Qin Yuhua
    Ding Xiangqian
    Gong Huili
    SPECTROSCOPY LETTERS, 2013, 46 (06) : 397 - 402