Effect of Nb Content and Second Heat Cycle Peak Temperatures on Toughness of X80 Pipeline Steel

被引:1
|
作者
Chen, Yuefeng [1 ,2 ]
Yang, Yaobin [1 ,2 ]
He, Xiaodong [1 ,2 ]
Chi, Qiang [1 ,2 ]
Qi, Lihua [1 ,2 ]
Li, Weiwei [1 ,2 ]
Li, Xin [1 ,2 ]
机构
[1] Tubular Goods Res Inst CNPC, Natl Key Lab Oil & Gas Drilling & Prod Transportat, Xian 710077, Peoples R China
[2] Int Welding Technol Ctr, Xian 710077, Peoples R China
关键词
X80 pipeline steel; Nb; thermal simulation; HAZ; toughness; AFFECTED ZONE; STRENGTH; MICROSTRUCTURE;
D O I
10.3390/ma16247632
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The microstructure evolution and variation of impact toughness in the heat-affected zone (HAZ) of X80 pipeline steel with different Nb content under different peak temperatures in the secondary thermal cycle were studied through welding thermal simulation, the Charpy impact test, EBSD analysis, SEM observation, and TEM observation in this study. The results indicate that when the peak temperatures of the second pass were lower than Ac1, both X80 pipeline steels had high impact toughness. For secondary peak temperatures in the range of Ac1 to Ac3, both X80 pipeline steels had the worst impact toughness, mainly due to the formation of massive blocky M-A constituents in chain form on grain boundaries. When the secondary peak temperatures were higher than Ac3, both X80 pipeline steels had excellent impact toughness. Smaller grain size and higher proportions of HAGBs can effectively improve the impact toughness. Meanwhile, high Nb X80 pipeline steel had higher impact absorption energy and smaller dispersion. Adding an appropriate amount of Nb to X80 pipeline steel can ensure the impact toughness of SCCGHAZ and SCGHAZ in welded joints.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] MICROSTRUCTURE AND TOUGHNESS OF HAZ IN X80 PIPELINE STEEL WITH HIGH Nb CONTENT
    Miao Chengliang
    Shang Chengjia
    Wang Xuemin
    Hang Longfei
    Subramanian, Mani
    ACTA METALLURGICA SINICA, 2010, 46 (05) : 541 - 546
  • [2] Effects of Alloy Content on Impact Toughness in X80 Pipeline Steel
    Wu, Guoxi
    Liu, Chengjun
    Chen, Ren
    Li, Xiaoliang
    Jiang, Maofa
    PROCEEDINGS OF THE 2015 2ND INTERNATIONAL FORUM ON ELECTRICAL ENGINEERING AND AUTOMATION (IFEEA 2015), 2016, 54 : 261 - 264
  • [3] Effect of Nb on microstructure and corrosion resistance of X80 pipeline steel
    Xia, Fan
    Li, Zhiwei
    Ma, Ming
    Zhao, Yonggang
    Wu, Changjun
    Su, Xuping
    Peng, Haoping
    INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2023, 203
  • [4] Effect of Mo microalloying on impact toughness of X80 pipeline steel in SCGHAZ
    Li, Yuan
    Feng, Qingshan
    Cui, Shaohua
    Dai, Lianshuang
    Liu, Qingyou
    Jia, Shujun
    Zhang, Hesong
    Wu, Huibin
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 28 : 2648 - 2659
  • [5] Microstructure and toughness of heat-affected zone in girth welding of X80 steel pipe with different Nb content
    Hanjie Xuebao/Transactions of the China Welding Institution, 2024, 45 (03): : 75 - 81
  • [6] Fracture toughness of the materials in welded joint of X80 pipeline steel
    Yang, Yonghe
    Shi, Lei
    Xu, Zhen
    Lu, Hongsheng
    Chen, Xu
    Wang, Xin
    ENGINEERING FRACTURE MECHANICS, 2015, 148 : 337 - 349
  • [7] Precipitates in Nb and Nb-V Microalloyed X80 Pipeline Steel
    Li, Zhongyi
    Liu, Delu
    Zhang, Jianping
    Tian, Wenhuai
    MICROSCOPY AND MICROANALYSIS, 2013, 19 : 62 - 65
  • [8] Effect of Ce content on the hydrogen induced cracking of X80 pipeline steel
    Cheng, Wensen
    Song, Bo
    Mao, Jinghong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (40) : 15303 - 15316
  • [9] Effect of Post-Weld Heat Treatment on Microstructure and Fracture Toughness of X80 Pipeline Steel Welded Joint
    Wang, Xueli
    Wang, Dongpo
    Dai, Lianshuang
    Deng, Caiyan
    Li, Chengning
    Wang, Yanjun
    Shen, Ke
    MATERIALS, 2022, 15 (19)
  • [10] Effect of Glutaraldehyde on Corrosion of X80 Pipeline Steel
    Tian, Feng
    Pan, Lin
    COATINGS, 2021, 11 (10)