Regulation of Interfacial Lattice Oxygen Activity by Full-Surface Modification Engineering towards Long Cycling Stability for Co-Free Li-Rich Mn-Based Cathode

被引:18
|
作者
Guo, Weibin [1 ]
Zhang, Yinggan [1 ]
Lin, Liang [1 ]
Liu, Yuanyuan [1 ]
Fan, Mengjian [1 ]
Gao, Guiyang [1 ]
Wang, Shihao [1 ]
Sa, Baisheng [2 ]
Lin, Jie [1 ]
Luo, Qing [1 ]
Qu, Baihua [3 ]
Wang, Laisen [1 ]
Shi, Ji [4 ]
Xie, Qingshui [1 ,5 ]
Peng, Dong-Liang [1 ]
机构
[1] Xiamen Univ, Coll Mat, State Key Lab Phys Chem Solid Surface, Fujian Key Lab Surface & Interface Engn High Perfo, Xiamen 361005, Peoples R China
[2] Fuzhou Univ, Coll Mat Sci & Engn, Multiscale Computat Mat Facil, Fuzhou 350100, Peoples R China
[3] Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400044, Peoples R China
[4] Tokyo Inst Technol, Sch Mat & Chem Technol, Tokyo 1528552, Japan
[5] Xiamen Univ, Shenzhen Res Inst, Shenzhen 518000, Peoples R China
基金
中国国家自然科学基金;
关键词
anionic redox activity regulation; Co-free Li-rich Mn-based cathode materials; cycling stability; full-surface coating; LAYERED OXIDES; LITHIUM; ELECTRODES;
D O I
10.1002/smll.202300175
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The construction of a protective layer for stabilizing anion redox reaction is the key to obtaining long cycling stability for Li-rich Mn-based cathode materials. However, the protection of the exposed surface/interface of the primary particles inside the secondary particles is usually ignored and difficult, let alone the investigation of the impact of the surface engineering of the internal primary particles on the cycling stability. In this work, an efficient method to regulate cycling stability is proposed by simply adjusting the distribution state of the boron nickel complexes coating layer. Theoretical calculation and experimental results display that the full-surface boron nickel complexes coating layer can not only passivate the activity of interface oxygen and improve its stability but also play the role of sharing voltage and protective layer to gradually activate the oxygen redox reaction during cycling. As a result, the elaborately designed cobalt-free Li-rich Mn-based cathode displays the highest discharge-specific capacity retentions of 91.1% after 400 cycles at 1 C and 94.3% even after 800 cycles at 5 C. In particular, the regulation strategy has well universality and is suitable for other high-capacity Li-rich cathode materials.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] AlPO4-Li3PO4 dual shell for enhancing interfacial stability of Co-free Li-rich Mn-based cathode
    Wang, Yanyan
    Yu, Wenhua
    Zhao, Liuyang
    Wu, Aimin
    Li, Aikui
    Dong, Xufeng
    Huang, Hao
    ELECTROCHIMICA ACTA, 2023, 462
  • [2] Modulation of lattice oxygen boosts the electrochemical activity and stability of Co-free Li-rich cathodes
    Gui-Jing Xu
    Wang Ke
    Fu-Da Yu
    Jie Feng
    Yun-Shan Jiang
    Lan-Fang Que
    Lei Zhao
    Zhen-Bo Wang
    Journal of Energy Chemistry, 2022, 75 (12) : 117 - 126
  • [3] Modulation of lattice oxygen boosts the electrochemical activity and stability of Co-free Li-rich cathodes
    Xu, Gui-Jing
    Ke, Wang
    Yu, Fu-Da
    Feng, Jie
    Jiang, Yun-Shan
    Que, Lan -Fang
    Zhao, Lei
    Wang, Zhen-Bo
    JOURNAL OF ENERGY CHEMISTRY, 2022, 75 : 117 - 126
  • [4] Inhibition of Structural Transformation and Surface Lattice Oxygen Activity for Excellent Stability Li-Rich Mn-Based Layered Oxides
    Huo, Yong-Lin
    Gu, Yi-Jing
    Chen, Zi-Liang
    Ma, Xiao-Yu
    Xiong, Yi-Ge
    Zhang, Hua-Fei
    Wu, Fu-Zhong
    Dai, Xin-Yi
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (14) : 18450 - 18462
  • [5] Remineralization constructs stable surfaces to enhance the cycling stability of Li-rich Mn-based cathode
    Wan, Jing-Zhe
    Ma, Chao
    Gao, Liang
    Wang, Kai-Xue
    Chen, Jie-Sheng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 691
  • [6] Improving the Cycling Stability of Li-Rich Mn-Based Cathodes through Surface Modification of VOPO4
    Xie, Xin
    Li, Heng
    Cao, Shuang
    Wu, Chao
    Li, Zhi
    Chang, Baobao
    Chen, Gairong
    Guo, Xiaowei
    Wu, Tianjing
    Wang, Xianyou
    ENERGY & FUELS, 2021, 35 (17) : 14148 - 14156
  • [7] Multifunctional Surface Construction for Long-Term Cycling Stability of Li-Rich Mn-Based Layered Oxide Cathode for Li-Ion Batteries
    Yan, Chenhui
    Shao, Qinong
    Yao, Zhihao
    Gao, Mingxi
    Zhang, Chenyang
    Chen, Gairong
    Sun, Qianwen
    Sun, Wenping
    Liu, Yongfeng
    Gao, Mingxia
    Pan, Hongge
    SMALL, 2022, 18 (43)
  • [8] Regulating the Mott-Hubbard Splitting for High-Performance Co-Free Li-Rich Mn-Based Oxide Cathode
    Wang, Tianyu
    Wang, Ruoyu
    Zhang, Jicheng
    Zhao, Guangxue
    Yin, Wen
    Zhang, Nian
    Zheng, Lirong
    Liu, Xiangfeng
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [9] Enhancing cycling stability of Li-rich Mn-based cathode materials via cyano functional additives
    Zhou, Dongwei
    Yang, Zhanlin
    Wang, Shihao
    Gao, Guiyang
    Zhu, Jie
    Zhang, Chengkun
    Li, Saichao
    Sa, Baisheng
    Lin, Jie
    Peng, Dong-Liang
    Xie, Qingshui
    MATERIALS CHEMISTRY FRONTIERS, 2025, 9 (06) : 965 - 975
  • [10] Oxygen vacancy in Li-rich Mn-based cathode materials: origination, influence, regulation and characterization
    Liu, Xinrui
    Cheng, Jiaoyang
    Guan, Yunlong
    Huang, Songtao
    Lian, Fang
    MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (17) : 3434 - 3454