3D printing microporous scaffolds from modular bioinks containing sacrificial, cell-encapsulating microgels

被引:4
|
作者
Seymour, Alexis J. [1 ]
Kilian, David [2 ]
Navarro, Renato S. [2 ]
Hull, Sarah M. [3 ]
Heilshorn, Sarah C. [2 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
OXIDIZED ALGINATE; HYDROGELS; DEGRADATION; OXIDATION; MONODISPERSE; GENERATION;
D O I
10.1039/d3bm00721a
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Microgel-based biomaterials have inherent porosity and are often extrudable, making them well-suited for 3D bioprinting applications. Cells are commonly introduced into these granular inks post-printing using cell infiltration. However, due to slow cell migration speeds, this strategy struggles to achieve depth-independent cell distributions within thick 3D printed geometries. To address this, we leverage granular ink modularity by combining two microgels with distinct functions: (1) structural, UV-crosslinkable microgels made from gelatin methacryloyl (GelMA) and (2) sacrificial, cell-laden microgels made from oxidized alginate (AlgOx). We hypothesize that encapsulating cells within sacrificial AlgOx microgels would enable the simultaneous introduction of void space and release of cells at depths unachievable through cell infiltration alone. Blending the microgels in different ratios produces a family of highly printable GelMA : AlgOx microgel inks with void fractions ranging from 0.03 to 0.35. As expected, void fraction influences the morphology of human umbilical vein endothelial cells (HUVEC) within GelMA : AlgOx inks. Crucially, void fraction does not alter the ideal HUVEC distribution seen throughout the depth of 3D printed samples. This work presents a strategy for fabricating constructs with tunable porosity and depth-independent cell distribution, highlighting the promise of microgel-based inks for 3D bioprinting. Blending sacrificial, cell-laden microgels with structural, UV-crosslinkable microgels produces a family of modular bioinks with tunable void fractions that influence cellular morphology while maintaining a depth-independent cell distribution.
引用
收藏
页码:7598 / 7615
页数:18
相关论文
共 50 条
  • [1] Microgels and Granular Gels: From Injectable Scaffolds and Bioinks to 3D Printing Supports
    Kajtez, Janko
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2023, (197):
  • [2] Development of bioinks for 3D printing microporous, sintered calcium phosphate scaffolds
    Montelongo, Sergio A.
    Chiou, Gennifer
    Ong, Joo L.
    Bizios, Rena
    Guda, Teja
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2021, 32 (08)
  • [3] Development of bioinks for 3D printing microporous, sintered calcium phosphate scaffolds
    Sergio A. Montelongo
    Gennifer Chiou
    Joo L. Ong
    Rena Bizios
    Teja Guda
    Journal of Materials Science: Materials in Medicine, 2021, 32
  • [4] 4D printing of self-folding and cell-encapsulating 3D microstructures as scaffolds for tissue-engineering applications
    Cui, Chunxiao
    Kim, Dong-Ook
    Pack, Min Y.
    Han, Biao
    Han, Lin
    Sun, Ying
    Han, Li-Hsin
    BIOFABRICATION, 2020, 12 (04)
  • [5] Monodisperse Cell-Encapsulating Peptide Microgel Beads for 3D Cell Culture
    Tsuda, Yukiko
    Morimoto, Yuya
    Takeuchi, Shoji
    LANGMUIR, 2010, 26 (04) : 2645 - 2649
  • [6] Development of 3D printing scaffolds by sacrificial ice support layers
    Moghanizadeh, Abbas
    MANUFACTURING LETTERS, 2022, 31 : 116 - 118
  • [7] Transparent and Cell-Guiding Cellulose Nanofiber 3D Printing Bioinks
    Radeke, Carmen
    Pons, Raphaël
    Mihajlovic, Marko
    Knudsen, Jonas R.
    Butdayev, Sarkhan
    Kempen, Paul J.
    Segeritz, Charis-Patricia
    Andresen, Thomas L.
    Pehmøller, Christian K.
    Jensen, Thomas E.
    Lind, Johan U.
    ACS Applied Materials and Interfaces, 2023, 15 (02): : 2564 - 2577
  • [8] Transparent and Cell-Guiding Cellulose Nanofiber 3D Printing Bioinks
    Radeke, Carmen
    Pons, Raphael
    Mihajlovic, Marko
    Knudsen, Jonas R.
    Butdayev, Sarkhan
    Kempen, Paul J.
    Segeritz, Charis-Patricia
    Andresen, Thomas L.
    Pehmoller, Christian K.
    Jensen, Thomas E.
    Lind, Johan U.
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (02)
  • [9] Freestanding vascular scaffolds engineered by direct 3D printing with Gt-Alg-MMT bioinks
    Wu, Xiaofang
    Chen, Kai
    Chai, Qi
    Liu, Siyu
    Feng, Cunao
    Xu, Linmin
    Zhang, Dekun
    BIOMATERIALS ADVANCES, 2022, 133
  • [10] Engineered 3D microporous gelatin scaffolds to study cell migration
    De Cock, Liesbeth J.
    De Wever, Olivier
    Hammad, Hamida
    Lambrecht, Bart N.
    Vanderleyden, Els
    Dubruel, Peter
    De Vos, Filip
    Vervaet, Chris
    Remon, Jean Paul
    De Geest, Bruno G.
    CHEMICAL COMMUNICATIONS, 2012, 48 (29) : 3512 - 3514