DEGREE CONDITIONS FOR THE EXISTENCE OF A {P2,P5}-FACTOR IN A GRAPH

被引:11
|
作者
Wang, Sufang [1 ]
Zhang, Wei [2 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Publ Management, Zhenjiang 212100, Jiangsu, Peoples R China
[2] Wenzhou Univ Technol, Sch Econ & Management, Wenzhou 325000, Zhejiang, Peoples R China
关键词
Graph; independence number; degree condition; {P-2; P-5}-factor;
D O I
10.1051/ro/2023111
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A subgraph of a graph G is spanning if the subgraph covers all vertices of G. A pathfactor of a graph.. is a spanning subgraph H of G such that every component of H is a path. In this article, we prove that (i) a connected graph G with delta(G) >= 5 admits a {P-2, P-5}-factor if G satisfies delta(G) > 3 alpha(G)-1/4; (ii) a connected graph G of order n with n >= 7 has a {P-2,P-5}-factor if G satisfies max{dG (x), dG(y)} >= 3n/7 for any two nonadjacent vertices x and y of G.
引用
收藏
页码:2231 / 2237
页数:7
相关论文
共 50 条