ON NEARLY FREE ARRANGEMENTS OF LINES WITH NODES AND TRIPLE POINTS

被引:0
|
作者
Kabat, Jakub [1 ]
机构
[1] Pedag Univ Krakow, Dept Math, Krakow, Poland
关键词
nearly free curves; line arrangements;
D O I
10.1216/rmj.2023.53.111
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a classification of nearly free arrangements of lines in the complex projective plane with nodes and triple points.
引用
收藏
页码:111 / 117
页数:7
相关论文
共 50 条
  • [1] On the nearly freeness of conic-line arrangements with nodes, tacnodes, and ordinary triple points
    Aleksandra Gałecka
    Boletín de la Sociedad Matemática Mexicana, 2022, 28
  • [2] On the nearly freeness of conic-line arrangements with nodes, tacnodes, and ordinary triple points
    Galecka, Aleksandra
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (03):
  • [3] On conic-line arrangements with nodes, tacnodes, and ordinary triple points
    Dimca, Alexandru
    Pokora, Piotr
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 56 (02) : 403 - 424
  • [4] On conic-line arrangements with nodes, tacnodes, and ordinary triple points
    Alexandru Dimca
    Piotr Pokora
    Journal of Algebraic Combinatorics, 2022, 56 : 403 - 424
  • [5] Correction: On conic-line arrangements with nodes, tacnodes, and ordinary triple points
    Alexandru Dimca
    Piotr Pokora
    Journal of Algebraic Combinatorics, 2022, 56 : 1339 - 1339
  • [6] Line arrangements with many triple points
    Kuehne, Lukas
    Szemberg, Tomasz
    Tutaj-Gasinska, Halszka
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (07) : 2501 - 2512
  • [7] Triangles in arrangements of points and lines in the plane
    Klavik, Pavel
    Kral, Daniel
    Mach, Lukas
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (03) : 1140 - 1142
  • [8] Line arrangements with the maximal number of triple points
    M. Dumnicki
    Ł. Farnik
    A. Główka
    M. Lampa-Baczyńska
    G. Malara
    T. Szemberg
    J. Szpond
    H. Tutaj-Gasińska
    Geometriae Dedicata, 2016, 180 : 69 - 83
  • [9] Line arrangements with the maximal number of triple points
    Dumnicki, M.
    Farnik, L.
    Glowka, A.
    Lampa-Baczynska, M.
    Malara, Grzegorz
    Szemberg, T.
    Szpond, J.
    Tutaj-Gasinska, H.
    GEOMETRIAE DEDICATA, 2016, 180 (01) : 69 - 83
  • [10] Double Points of Free Projective Line Arrangements
    Abe, Takuro
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (03) : 1811 - 1824