The biclique B of a graph G is a maximal induced complete bipartite subgraph of G. The biclique graph KB(G) of a graph G is the graph with the bicliques of G as its vertices where two vertices of KB(G) are adjacent if and only if they have a common vertex in G. In this paper, we disprove a conjecture of Groshaus and Montero concerning Helly property of biclique graphs (Groshaus and Montero, 2021) and two conjectures of Montero concerning vertex removal in biclique graphs (Montero, 2022). In addition, we confirm a conjecture of Montero about the structural characterization of biclique graphs in the same paper.(c) 2023 Elsevier B.V. All rights reserved.
机构:
College of Mathematics and System Sciences, Xinjiang University, Xinjiang, Urumqi,830046, ChinaCollege of Mathematics and System Sciences, Xinjiang University, Xinjiang, Urumqi,830046, China
机构:
Univ Buenos Aires, Dept Computac, Buenos Aires, DF, ArgentinaUniv Buenos Aires, Dept Computac, Buenos Aires, DF, Argentina
Groshaus, Marina
Szwarcfiter, Jayme L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Matemat, NCE, Rio De Janeiro, Brazil
Univ Fed Rio de Janeiro, COPPE, BR-21945 Rio De Janeiro, BrazilUniv Buenos Aires, Dept Computac, Buenos Aires, DF, Argentina
机构:
Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Computat, RA-1053 Buenos Aires, DF, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dept Computat, RA-1053 Buenos Aires, DF, Argentina
Groshaus, Marina
Szwarcfiter, Jayme L.
论文数: 0引用数: 0
h-index: 0
机构:Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Computat, RA-1053 Buenos Aires, DF, Argentina