Fringe field maps for symplectic models of general Cartesian dipoles

被引:0
|
作者
Lindberg, Ryan [1 ]
Borland, Michael [1 ]
机构
[1] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
关键词
D O I
10.1103/PhysRevAccelBeams.26.114001
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We present a framework with which to analyze the effects of magnetic fringe fields. The theory defines the fringe field to be the transition between two regions of nearly constant field, and can incorporate constant multipoles in the magnet body. We then analyze Cartesian dipoles and derive symplectic fringe field maps that are applicable to longitudinal and/or transverse gradient dipoles. We verify the fringe maps with tracking, and show how we incorporated the theory into the tracking code ELEGANT. The resulting elements and several supporting scripts are now available for users, and we conclude with several predictions relevant to the APS Upgrade project.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Symplectic scaling of transfer maps including fringe fields
    Hoffstatter, GH
    Berz, M
    PHYSICAL REVIEW E, 1996, 54 (05): : 5664 - 5672
  • [2] ACCURATE AND FAST COMPUTATION OF HIGH-ORDER FRINGE-FIELD MAPS VIA SYMPLECTIC SCALING
    HOFFSTATTER, GH
    BERZ, M
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1995, 363 (1-2): : 124 - 127
  • [3] A new method to compute periodic orbits in general symplectic maps
    Calleja, R.
    del-Castillo-Negrete, D.
    Martinez-del-Rio, D.
    Olvera, A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 99 (99):
  • [4] DIFFERENTIAL ALGEBRA BASED MAGNETIC FIELD COMPUTATIONS AND ACCURATE FRINGE FIELD MAPS
    Erdelyi, B.
    Berz, M.
    Lindemann, M.
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2015, 11 (04): : 36 - 55
  • [5] A CONSTRUCTION OF CARTESIAN AUTHENTICATION CODE FROM SINGULAR SYMPLECTIC SPACES OVER A FINITE FIELD
    Zhao, Shufang
    Li, Zengti
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2014, 6 (02)
  • [6] Coupled symplectic maps as models for subdiffusive processes in disordered Hamiltonian lattices
    Antonopoulos, Chris G.
    Bountis, Tassos
    Drossos, Lambros
    APPLIED NUMERICAL MATHEMATICS, 2016, 104 : 110 - 119
  • [7] Duality of orthogonal and symplectic random tensor models: general invariants
    Hannes Keppler
    Thomas Muller
    Letters in Mathematical Physics, 113
  • [8] Duality of orthogonal and symplectic random tensor models: general invariants
    Keppler, Hannes
    Mueller, Thomas
    LETTERS IN MATHEMATICAL PHYSICS, 2023, 113 (04)
  • [9] Double structures and double symmetries for the general symplectic gravity models
    Gao, YJ
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (12) : 5656 - 5663
  • [10] Shearless bifurcation on symplectic maps of magnetic field lines in tokamaks with reversed current
    Bartoloni, B.
    Schelin, A. B.
    Caldas, I. L.
    PHYSICS LETTERS A, 2016, 380 (31-32) : 2416 - 2421