Outstanding challenges and future directions for biodiversity monitoring using citizen science data

被引:101
|
作者
Johnston, Alison [1 ,2 ]
Matechou, Eleni [3 ]
Dennis, Emily B. [3 ,4 ]
机构
[1] Univ St Andrews, Dept Maths & Stat, Ctr Res Ecol & Environm Modelling, St Andrews, Fife, Scotland
[2] Cornell Lab Ornithol, Ithaca, NY 14850 USA
[3] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury, Kent, England
[4] Butterfly Conservat, Wareham, Dorset, England
来源
METHODS IN ECOLOGY AND EVOLUTION | 2023年 / 14卷 / 01期
基金
美国国家科学基金会;
关键词
citizen science; community science; detectability; multi-species models; observation process; occupancy models; presence-only; statistical ecology; N-MIXTURE MODELS; SPECIES OCCURRENCE DATA; PRESENCE-ONLY DATA; BIG DATA; OCCUPANCY MODELS; ECOLOGICAL RESEARCH; SPATIAL BIAS; DATA QUALITY; ABUNDANCE; INFERENCE;
D O I
10.1111/2041-210X.13834
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
There is increasing availability and use of unstructured and semi-structured citizen science data in biodiversity research and conservation. This expansion of a rich source of 'big data' has sparked numerous research directions, driving the development of analytical approaches that account for the complex observation processes in these datasets. We review outstanding challenges in the analysis of citizen science data for biodiversity monitoring. For many of these challenges, the potential impact on ecological inference is unknown. Further research can document the impact and explore ways to address it. In addition to outlining research directions, describing these challenges may be useful in considering the design of future citizen science projects or additions to existing projects. We outline challenges for biodiversity monitoring using citizen science data in four partially overlapping categories: challenges that arise as a result of (a) observer behaviour; (b) data structures; (c) statistical models; and (d) communication. Potential solutions for these challenges are combinations of: (a) collecting additional data or metadata; (b) analytically combining different datasets; and (c) developing or refining statistical models. While there has been important progress to develop methods that tackle most of these challenges, there remain substantial gains in biodiversity monitoring and subsequent conservation actions that we believe will be possible by further research and development in these areas. The degree of challenge and opportunity that each of these presents varies substantially across different datasets, taxa and ecological questions. In some cases, a route forward to address these challenges is clear, while in other cases there is more scope for exploration and creativity.
引用
收藏
页码:103 / 116
页数:14
相关论文
共 50 条
  • [1] Intelligent Sensing for Citizen Science Challenges and Future Directions
    O'Grady, Michael J.
    Muldoon, Conor
    Carr, Dominic
    Wan, Jie
    Kroon, Barnard
    O'Hare, Gregory M. P.
    MOBILE NETWORKS & APPLICATIONS, 2016, 21 (02): : 375 - 385
  • [2] Three Frontiers for the Future of Biodiversity Research Using Citizen Science Data
    Callaghan, Corey T.
    Poore, Alistair G. B.
    Mesaglio, Thomas
    Moles, Angela T.
    Nakagawa, Shinichi
    Roberts, Christopher
    Rowley, Jodi J. L.
    VergEs, Adriana
    Wilshire, John H.
    Cornwell, William K.
    BIOSCIENCE, 2021, 71 (01) : 55 - 63
  • [3] Using Semistructured Surveys to Improve Citizen Science Data for Monitoring Biodiversity
    Kelling, Steve
    Johnston, Alison
    Bonn, Aletta
    Fink, Daniel
    Ruiz-Gutierrez, Viviana
    Bonney, Rick
    Fernandez, Miguel
    Hochachka, Wesley M.
    Julliard, Romain
    Kraemer, Roland
    Guralnick, Robert
    BIOSCIENCE, 2019, 69 (03) : 170 - 179
  • [4] Overcoming the challenges of public data archiving for citizen science biodiversity recording and monitoring schemes
    Pearce-Higgins, James W.
    Baillie, Stephen R.
    Boughey, Katherine
    Bourn, Nigel A. D.
    Foppen, Ruud P. B.
    Gillings, Simon
    Gregory, Richard D.
    Hunt, Tom
    Jiguet, Frederic
    Lehikoinen, Aleksi
    Musgrove, Andy J.
    Robinson, Rob A.
    Roy, David B.
    Siriwardena, Gavin M.
    Walker, Kevin J.
    Wilson, Jeremy D.
    JOURNAL OF APPLIED ECOLOGY, 2018, 55 (06) : 2544 - 2551
  • [5] Challenges for biodiversity monitoring using citizen science in transitioning social-ecological systems
    Loos, Jacqueline
    Horcea-Milcu, Andra I.
    Kirkland, Paul
    Hartel, Tibor
    Osvath-Ferencz, Marta
    Fischer, Joern
    JOURNAL FOR NATURE CONSERVATION, 2015, 26 : 45 - 48
  • [6] South African marine citizen science - benefits, challenges and future directions
    Potts, W. M.
    Mann-Lang, J. B.
    Mann, B. Q.
    Griffiths, C. L.
    Attwood, C. G.
    de Blocq, A. D.
    Elwen, S. H.
    Nel, R.
    Sink, K.
    Thornycroft, R.
    AFRICAN JOURNAL OF MARINE SCIENCE, 2021, 43 (03) : 353 - 366
  • [7] Data Science Meets the Clinician: Challenges and Future Directions
    Charitos, Efstratios I.
    Wilbring, Manuel
    Treede, Hendrik
    THORACIC AND CARDIOVASCULAR SURGEON, 2018, 66 (01): : 7 - 10
  • [8] A Vision for Global Biodiversity Monitoring With Citizen Science
    Pocock, Michael J. O.
    Chandler, Mark
    Bonney, Rick
    Thornhill, Ian
    Albin, Anna
    August, Tom
    Bachman, Steven
    Brown, Peter M. J.
    Fernandes Cunha, Davi Gasparini
    Grez, Audrey
    Jackson, Colin
    Peters, Monica
    Rabarijaon, Narindra Romer
    Roy, Helen E.
    Zaviezo, Tania
    Danielsen, Finn
    NEXT GENERATION BIOMONITORING, PT 2, 2018, 59 : 169 - 223
  • [9] The role of citizen science in monitoring biodiversity in Ireland
    Alison Donnelly
    Olivia Crowe
    Eugenie Regan
    Sinead Begley
    Amelia Caffarra
    International Journal of Biometeorology, 2014, 58 : 1237 - 1249
  • [10] The role of citizen science in monitoring biodiversity in Ireland
    Donnelly, Alison
    Crowe, Olivia
    Regan, Eugenie
    Begley, Sinead
    Caffarra, Amelia
    INTERNATIONAL JOURNAL OF BIOMETEOROLOGY, 2014, 58 (06) : 1237 - 1249