De novo molecule design towards biased properties via a deep generative framework and iterative transfer learning

被引:1
|
作者
Sattari, Kianoosh [1 ]
Li, Dawei [1 ]
Kalita, Bhupalee [4 ]
Xie, Yunchao [1 ]
Lighvan, Fatemeh Barmaleki [5 ]
Isayev, Olexandr [4 ]
Lin, Jian [1 ,2 ,3 ]
机构
[1] Dept Mech & Aerosp Engn, Buffalo, NY 65409 USA
[2] Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[3] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA
[4] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA
[5] Southern Illinois Univ Edwardsville, Dept Biol Sci, Edwardsville, IL 62026 USA
来源
DIGITAL DISCOVERY | 2024年 / 3卷 / 02期
基金
美国国家科学基金会;
关键词
INVERSE DESIGN; PROJECT;
D O I
10.1039/d3dd00210a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
De novo design of molecules with targeted properties represents a new frontier in molecule development. Despite enormous progress, two main challenges remain: (i) generating novel molecules conditioned on targeted, continuous property values; (ii) obtaining molecules with property values beyond the range in the training data. To tackle these challenges, we propose a reinforced regressional and conditional generative adversarial network (RRCGAN) to generate chemically valid molecules with targeted HOMO-LUMO energy gap (Delta EH-L) as a proof-of-concept study. As validated by density functional theory (DFT) calculation, 75% of the generated molecules have a relative error (RE) of <20% of the targeted Delta EH-L values. To bias the generation toward the Delta EH-L values beyond the range of the original training molecules, transfer learning was applied to iteratively retrain the RRCGAN model. After just two iterations, the mean Delta EH-L of the generated molecules increases to 8.7 eV from the mean value of 5.9 eV shown in the initial training dataset. Qualitative and quantitative analyses reveal that the model has successfully captured the underlying structure-property relationship, which agrees well with the established physical and chemical rules. These results present a trustworthy, purely data-driven methodology for the highly efficient generation of novel molecules with different targeted properties.
引用
收藏
页码:410 / 421
页数:12
相关论文
共 50 条
  • [1] De Novo Design of κ-Opioid Receptor Antagonists Using a Generative Deep-Learning Framework
    Salas-Estrada, Leslie
    Provasi, Davide
    Qiu, Xing
    Kaniskan, Husnu Umit
    Huang, Xi-Ping
    DiBerto, Jeffrey F.
    Ribeiro, Joao Marcelo Lamim
    Jin, Jian
    Roth, Bryan L.
    Filizola, Marta
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (16) : 5056 - 5065
  • [2] Deep Generative Models in De Novo Drug Molecule Generation
    Pang, Chao
    Qiao, Jianbo
    Zeng, Xiangxiang
    Zou, Quan
    Wei, Leyi
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 64 (07) : 2174 - 2194
  • [3] De novo drug design with deep generative models
    Das, Payel
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [4] Advances and challenges in deep generative models for de novo molecule generation
    Xue, Dongyu
    Gong, Yukang
    Yang, Zhaoyi
    Chuai, Guohui
    Qu, Sheng
    Shen, Aizong
    Yu, Jing
    Liu, Qi
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2019, 9 (03)
  • [5] Application progress of deep generative models in de novo drug design
    Liu, Yingxu
    Xu, Chengcheng
    Yang, Xinyi
    Zhang, Yanmin
    Chen, Yadong
    Liu, Haichun
    MOLECULAR DIVERSITY, 2024, 28 (04) : 2411 - 2427
  • [6] Comprehensive assessment of deep generative architectures for de novo drug design
    Wang, Mingyang
    Sun, Huiyong
    Wang, Jike
    Pang, Jinping
    Chai, Xin
    Xu, Lei
    Li, Honglin
    Cao, Dongsheng
    Hou, Tingjun
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [7] De Novo Drug Design Using Reinforcement Learning with Graph- Based Deep Generative Models
    Atance, Sara Romeo
    Diez, Juan Viguera
    Engkvist, Ola
    Olsson, Simon
    Mercado, Rocio
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (20) : 4863 - 4872
  • [8] De novo small molecule design using deep learning models trained on SMILES strings
    Ghatty, Pavan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [9] De novo design of luciferases using deep learning
    Yeh, Andy Hsien-Wei
    Norn, Christoffer
    Kipnis, Yakov
    Tischer, Doug
    Pellock, Samuel J.
    Evans, Declan
    Ma, Pengchen
    Lee, Gyu Rie
    Zhang, Jason Z.
    Anishchenko, Ivan
    Coventry, Brian
    Cao, Longxing
    Dauparas, Justas
    Halabiya, Samer
    DeWitt, Michelle
    Carter, Lauren
    Houk, K. N.
    Baker, David
    NATURE, 2023, 614 (7949) : 774 - +
  • [10] De novo design of luciferases using deep learning
    Andy Hsien-Wei Yeh
    Christoffer Norn
    Yakov Kipnis
    Doug Tischer
    Samuel J. Pellock
    Declan Evans
    Pengchen Ma
    Gyu Rie Lee
    Jason Z. Zhang
    Ivan Anishchenko
    Brian Coventry
    Longxing Cao
    Justas Dauparas
    Samer Halabiya
    Michelle DeWitt
    Lauren Carter
    K. N. Houk
    David Baker
    Nature, 2023, 614 : 774 - 780