Bounds for the Tail Distributions of Suprema of Sub-Gaussian Type Random Fields

被引:0
|
作者
Hopkalo, Olha [1 ]
Sakhno, Lyudmyla [2 ]
Vasylyk, Olga [3 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Fac Econ, Dept Econ Cybernet, Volodymyrska Str 64, UA-01601 Kiev, Ukraine
[2] Taras Shevchenko Natl Univ Kyiv, Fac Mech & Math, Dept Probabil Theory Stat & Actuarial Math, Volodymyrska Str 64, UA-01601 Kiev, Ukraine
[3] Natl Tech Univ Ukraine, Igor Sikorsky Kyiv Polytech Inst, Dept Math Anal & Probabil Theory, Perem Ave 37, UA-03056 Kiev, Ukraine
关键词
sub-Gaussian random fields; distribution of supremum; heat equation; Airy equa-tion; random initial conditions; stochastic heat equation; HEAT-TYPE EQUATIONS;
D O I
10.17713/ajs.v52iSI.1753
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper presents bounds for the distributions of suprema for particular classes of p-sub-Gaussian random fields. Results stated depend on representations of bounds for increments of the fields in different metrics. Several examples of applications are provided to illustrate the results, in particular, to random fields related to stochastic partial differential equations and partial differential equations with random initial conditions.
引用
收藏
页码:54 / 70
页数:17
相关论文
共 50 条
  • [1] Bounds on tail probabilities for quadratic forms in dependent sub-gaussian random variables
    Zajkowski, Krzysztof
    STATISTICS & PROBABILITY LETTERS, 2020, 167
  • [2] Theory and generation of conditional, scalable sub-Gaussian random fields
    Panzeri, M.
    Riva, M.
    Guadagnini, A.
    Neuman, S. P.
    WATER RESOURCES RESEARCH, 2016, 52 (03) : 1746 - 1761
  • [3] Some applications of the Malliavin calculus to sub-Gaussian and non-sub-Gaussian random fields
    Vizcarra, Andrew B.
    Viens, Frederi G.
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS V, 2008, 59 : 363 - 395
  • [4] SUB-GAUSSIAN TAIL BOUNDS FOR THE WIDTH AND HEIGHT OF CONDITIONED GALTON-WATSON TREES
    Addario-Berry, Louigi
    Devroye, Luc
    Janson, Svante
    ANNALS OF PROBABILITY, 2013, 41 (02): : 1072 - 1087
  • [5] Modulus of continuity of some conditionally sub-Gaussian fields, application to stable random fields
    Bierme, Hermine
    Lacaux, Celine
    BERNOULLI, 2015, 21 (03) : 1719 - 1759
  • [6] Sub-Gaussian Error Bounds for Hypothesis Testing
    Wang, Yan
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 3050 - 3055
  • [7] INEQUALITIES FOR THE DISTRIBUTIONS OF FUNCTIONALS OF SUB-GAUSSIAN VECTORS
    Buldygin, V. V.
    Pechuk, E. D.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2009, 80 : 23 - 33
  • [8] PARAMETER ESTIMATION OF SUB-GAUSSIAN STABLE DISTRIBUTIONS
    Omelchenko, Vadym
    KYBERNETIKA, 2014, 50 (06) : 929 - 949
  • [9] Simulation of a strictly sub-Gaussian random field
    Turchyn, Ievgen
    STATISTICS & PROBABILITY LETTERS, 2014, 92 : 183 - 189
  • [10] Unconditional Convergence of Sub-Gaussian Random Series
    Giorgobiani, G.
    Kvaratskhelia, V.
    Menteshashvili, M.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2024, 34 (01) : 92 - 101